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Describing the early universe

a

t
texp tini t0

(with texp = t0 − 1/H0)

How to extrapolate to early times?
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1964 Penzias andWilson discover the Cosmic Microwave Background

Own image in Deutsches Museum, Munich Image: NASA

Background radiation T ∼ 3.5 K ⇒ ΩR = 0.00013
Modern value: T = 2.7255 K ⇒ ΩR = 5 · 10−5
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Yes, it’s a Planck curve: COBE-FIRAS (Mather et al.)
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shown here: spectrum ±3 σ

data from Fixsen et al. 1996 via http://lambda.gsfc.nasa.gov
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https://ui.adsabs.harvard.edu/abs/1996ApJ...473..576F/abstract
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Yes, it’s a Planck curve: COBE-FIRAS (Mather et al.)
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data from Fixsen et al. 1996 via http://lambda.gsfc.nasa.gov
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Photon numbers (cf. today’s exercise!)

From the Planck formula, by integration, photon number density is

nγ = 4 · 108 1
m3

Baryonic matter is at Ωb = 0.05; if all of that were protons,

nb = Ωb
ρc

mp
= 0.27

1
m3

Baryon-to-photon ratio:

η ≡
nb

nγ,CMB
= 7 · 10−10 ∼ 10−9

5 30



Now we know there’s radiation in the universe with ΩR = 5 · 10−5
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Densities scale
differently:

ρM(t) ∼ a(t)−3

ρR(t) ∼ a(t)−4

ρΛ(t) = ρΛ

Radiation remains
thermal, T ∼ a−1

baryon-to-photon ratio
remains constant:

η ≡
nb

nγ
∼ 10−9 = const .
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Change of photon energy with scale factor
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H ionized, 13.6 eV

Pu completely ionized, 120 keV

binding energy Ni-56: 8.8 MeV/nucleon

electron pair production at 1 MeV

E = 2,7 kT
E = 27 kT

2.7 kT=average photon energy, 27 kT lower limit for the highest-energetic fraction η = nb/nγ
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Rough sketch of cosmic history

singularity

10−33 s
inflation

10−6 s
quark confinement

1 s to 3 min
nucleosynthesis Now

13.8 Gyr
380,000 yr
CMB

108 yr
galaxies

radiation era matter era
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Different phases of cosmic history

quantum gravity phase 10−43 s 1019 GeV

inflationary expansion 10−33 s

baryogenesis ? 1016 (?) GeV

quark confinement 10−6 s 200 MeV

big bang nucleosynthesis ∼ minutes 109 K

recombination⇒ CMB 4 · 105 yr 3 · 103 K

perturbations⇒ large-scale structure > 1 s

galaxy formation > 0.1 Gyr
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 briefly, later lecture notes


we’ll cover the
basic physics
presently!

next lecture

later lecture
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Reaction rates in the early-universe plasma

How many reactions happen to a single particle per unit time?

Particle 1 (blue) radius r1, speed v; particless 2 (red) radius r2

⇒ cross-section σ = π r2 with r = r1 + r2

If this is like playing pool: in time interval ∆t , expect n2 v σ∆t reactions,
where n2 is the number density for particle species 2

Many particles of type 1: collision rate density (number per unit time per unit volume)

C = n1n2 ⟨uσ(E)⟩u, with suitable “thermal average”
with σ(E) the (energy-dependent) cross section (usually provided by nuclear/particle physics)
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Particle interactions and time scales

The number of reactions per particle of species 1 and reaction time scale τC :

Γ =
C
n1

= n2 ⟨uσ(E)⟩u ⇒ τC =
1
Γ
=

1
n2 ⟨uσ(E)⟩u

Compare this with expansion time scale

τH ≡
1

H(t)
=

a
ȧ

1. τH ≫ τC ⇔ Γ ≫ H for reactions that establish thermal equilibrium:
local Thermal Equilibrium (LTE): adiabatic (=isentropic) change
from one temperature-dependent equilibrium to the next

2. τC ≫ τH ⇔ H ≫ Γ: freeze-out, particle concentrations remain constant
(or change because of decay, or alternative reactions); temperature decouples.
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Boundary conditions for nucleosynthesis

Time scale 1:

Equilibrium protons and neutrons:

n + νe ↔ p + e−

n + e+ ↔ p + ν̄e

Cross-section from particle physics
⇒ weak interactions freeze-out at

t ≈ 1s, kBT ≈ 0.7 MeV.

Time scale 2:

p

n
p

n

d

d

γ

γ

3He

3-particle very rare⇒ 2-particle reactions
⇒ all nucleosynthesis starts with deuterium

binding energy D is 2.2 MeV
⇒ begin nucleosynthesis at 27 kBT < 2.2 MeV which
means T = 9.5 · 108 K, t = 110 s
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Big Bang nucleosynthesis (BBN)

Equilibrium at t = 1 s, kBT = 0.7 MeV with
Q ≡ (mn −mp)c2 = 1.293 MeV:

nn

np
=

(
mn

mp

)3/2

exp

(
−

Q
kBT

)
≈

1
6

From then to t = 110 s:
neutrons decay, with half-life τ1/2 = 614 s:

nn

np
=

1
6

(
1
2

)110 s/614 s

≈
1
7

With 14 p and 2 n, build 1 He-4 and 12 H

⇒ mass ratio Y = 0.25
Fig. 22 in Coc 2012
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https://ui.adsabs.harvard.edu/abs/2012ApJ...744..158C/abstract


Time evolution of abundances during BBN
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https://ui.adsabs.harvard.edu/abs/2018PhR...754....1P/abstract


BBN comparison with observations

Figure 5 (minimal cosmetic alterations) in Coc et al. 2017
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https://ui.adsabs.harvard.edu/abs/2017IJMPE..2641002C/abstract


CMB: Cosmic (microwave) background radiation

Going back to thermodynamics: consider equilibrium for the reaction

H + γ ↔ p + e−

Non-relativistic formula for number density of particle species i in thermal equilibrium:

ni = gi

(
2πm kBT

h2

)3/2

exp

(
−

mic2 − µi

kBT

)
,

with mi mass, gi degeneracy, µi chemical potential (all from Maxwell-Boltzmann)

Aspects we will not delve into, but accept:

in equilibrium, µH = µp + µe , for (blackbody) photon gas µγ = 0

ge = gp = 2 (spin ±1/2) and gH = 1 + 3 = 4 (spin 0 plus spin 1 state)
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Equilibrium state for ionization: Saha equation

npne

nH
=

(
2πmekBT

h2

)3/2

exp

(
−

B
kBT

)
with binding energy B = (mp+me−mH)c2 = 13.6 eV

Charge neutrality⇒ ne = np , baryon number density nb = ne + nH.

Define ionization fraction: xe ≡
ne

ne + nH
,

so that
x2

e

1 − xe
=

n2
e

nH(ne + nH)
=

n2
e

nHnb
≡ f(T , nb)

Baryon number density nb can be expressed via critical density ρc

and because of a(t) ∼ T as

nb(T) = nb0

(
T
T0

)3

=
Ωbρc

mp

(
T
T0

)3
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Equilibrium state for ionization

Putting everything together

x2
e

1 − xe
=

8πGmp

3H2
0Ωb

(
2πmekB

T

)3/2

exp

(
−

B
kBT

)

=
9 · 1021

Ωbh2
70

(
T

1 K

)−3/2

exp

(
−

1.6 · 105 K
T

)
≡ f(T ,Ωbh2

70)

with H0 = h70 · 70 km/s/Mpc. Solution:

xe =
1
2

[√
f [f + 4] − f)

]
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Recombination at what redshift?

For the fairly realistic Ωbh3
70 = 0.05:

When does recombination happen?

xe 0.1 0.5 0.9

T 3440 K 3770 K 4050 K

z 1260 1380 1490

t 361 000 yr 316 000 yr 283 000 yr

2000 2500 3000 3500 4000 4500 5000 5500
T [K]
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x e

bh2
70 = 0.05
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CMB from recombination: more realistic calculation

Problem with the simplification:
Photon gas treated as “heat bath” — but in reality,
more photons of just the right energy to re-ionize
(before they get redshifted out of resonance)

More detailed calculation:

consider excited states in equilibrium with each other
and with continuum

rate equation for Lyα and for 2-γ-process 2S→ 1S

cosmological redshift included

⇒ zrec = 1100, Trec = 3000 K
1S

2S 2P

Lyα

continuum
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Now, for the “in brief”

What we have left out in our analysis so far (see lecture notes):

neutrino background

pair production⇔ matter behaves like radiation

baryogenesis

quark confinement

What we will now briefly address:

quantum gravity

inflation phase
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Quantum gravity: the Planck scale

Heuristic derivation of Planck scale:
What limits particle localization ∆x?

Wave function:

∆x ∼ λ =
hc
E

= 1.24 · 10−15
(

E
1 GeV

)−1

m

Schwarzschild radius:

∆x = 2
2GM

c2
=

4GE
c4

= 5.3·10−54
(

E
1 GeV

)
m

ℓpl =

√
ℏG
c3

= 1.62·10−35 m, Epl = 1.22·1019 GeV 106 1012 1018 1024 1030
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Quantum gravity

Current CMB photons: kBT = 0.25 meV
⇒ Planck energy reached at z = 5 · 1022

Very, very early description requires quantum gravity theory
(but we don’t have a complete and consistent one. . . )

Candidate theories:

String theory

Loop quantum gravity

Both fundamentally inaccessible for experiments,
possibly predictions for CMB inhomogeneity patterns
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Inflationary phase

Early phase of exponential expansion, meant to solve:

Flatness problem

Horizon problem

Relic particle/monopole problem

Many different flavours/models:

old/new inflation

chaotic inflation

with current matter content produced
via friction as inflation ends

. . . some models have by now ruled out through
the study of CMB inhomogeneities

V(ϕ)

ϕ

V(ϕ)

ϕ
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Inflation and the horizon problem

Particle horizon in non-inflationary models too small!

In the night sky (transversal)
particle horizon for CMB is
around 3◦

Lots of causally disconnected
regions in the observed CMB!

If we assume plasma had to
find thermal equilibrium since
Big Bang to produce CMB, we
have a problem

Inflationary phase
→ larger particle horizon
→ problem solved

Base image: ESA Planck
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https://www.esa.int/ESA_Multimedia/Images/2013/03/Planck_CMB


Flatness problem and inflation 1

Introduce time-dependent critical density and time-dependent Ω(t):

ρc(t) =
3H(t)2

8πG
and ρ(t) = Ω(t)ρc(t).

First-order Friedmann equation:

Ω(t) − 1 =
kc2

R2
0 (aH)2

.

Specialize to absolute values, so that in a universe that is not identically flat,

|Ω(t) − 1| =
c2

R2
0 (aH)2

.
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Flatness problem and inflation 2

Evolution of |Ω(t) − 1| in simple universe models:

|Ω(t) − 1| ∼
1

(aH)2
∼ t

Radiation only

|Ω(t)− 1| ∼
1

(aH)2
∼ t2/3

Matter only

|Ω(t) − 1| ∼
1

(aH)2
∼ exp(−2H0t)

Exponential expansion

Are you worried about fine-tuning? (Not everyone is.)

Unless k = 0 identically, |Ω(t) − 1| must initially have been very small!

Solution: initial exponential phase naturally brings |Ω(t) − 1| far down.
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Relic particle problem (monopole problem)

Generic prediction Grand Unified Theories (GUTs):
Stable particles (notably magnetic monopoles),
m ∼ 1016 GeV, sufficient numbers for Ω ≫ 1.

Why are there so few of them, then?

Upper limits rather low:

nmonopole

nb
< 10−29.

Inflation after GUT phase: thins relic particles out MACRO detector collaboration (Gran Sasso Laboratory), 1998–2000
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http://hep.bu.edu/~macro/about.html


Inflation and density perturbations

Particularly interesting: inflation models make fairly
generic predictions for CMB, density perturbations:

post-inflation T : below Planck scale, < 1019 GeV

super-horizon fluctuations

quantum fluctuations: adiabatic, not isocurvature
perturbations

density fluctuations power spectrum P(k) ∼ k n,
with power-law index n close to 1

primordial waves⇒ B-modes in CMB
polarisation

⇒ more about (some of) this in the next lecture

User Amble on Wikimedia Comnons: Dark Sector Laboratory at
Amundsen-Scott South Pole Station. Left: South Pole Telescope.

Right: BICEP2 under license CC BY-SA 3.0
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https://commons.wikimedia.org/wiki/File:South_pole_spt_dsl.jpg
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Summing up

singularity

10−33 s
inflation

10−6 s
quark confinement

1 s to 3 min
nucleosynthesis Now

13.8 Gyr
380,000 yr
CMB

108 yr
galaxies

radiation era matter era

. . . but what about inhomogeneity?
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