BIG BANG PHASE: THE HOT, EARLY UNIVERSE BLOCK COURSE INTRODUCTION TO ASTRONOMY AND ASTROPHYSICS

MARKUS PÖSSEL

HAUS DER ASTRONOMIE AND MAX PLANCK INSTITUTE FOR ASTRONOMY

Heidelberg University, Spring Semester 2024

DESCRIBING THE EARLY UNIVERSE

How to extrapolate to early times?

1964 Penzias and Wilson discover the Cosmic Microwave Background

Own image in Deutsches Museum, Munich

Image: NASA

Background radiation $T \sim 3.5 \text{ K} \implies \Omega_R = 0.00013$ Modern value: $T = 2.7255 \text{ K} \implies \Omega_R = 5 \cdot 10^{-5}$

Yes, it's a Planck curve: COBE-FIRAS (Mather et al.)

data from Fixsen et al. 1996 via http://lambda.gsfc.nasa.gov

Yes, it's a Planck curve: COBE-FIRAS (Mather et al.)

data from Fixsen et al. 1996 via http://lambda.gsfc.nasa.gov

From the Planck formula, by integration, photon number density is

$$n_{\gamma} = 4 \cdot 10^8 \frac{1}{\mathrm{m}^3}$$

Baryonic matter is at $\Omega_b = 0.05$; if all of that were protons,

$$n_b = \Omega_b \frac{\rho_c}{m_p} = 0.27 \frac{1}{\mathrm{m}^3}$$

Baryon-to-photon ratio:

$$\eta \equiv \frac{n_b}{n_{\gamma,CMB}} = 7 \cdot 10^{-10} \sim 10^{-9}$$

Now we know there's radiation in the universe with $\Omega_R = 5 \cdot 10^{-5}$

Densities scale differently:

$$\rho_M(t) \sim a(t)^{-3}$$

 $\rho_R(t) \sim a(t)^{-4}$

 $\rho_\Lambda(t) = \rho_\Lambda$

Radiation remains thermal, $T \sim a^{-1}$

baryon-to-photon ratio remains constant:

 $\eta \equiv \frac{n_b}{n_\gamma} \sim 10^{-9} = const.$

30

CHANGE OF PHOTON ENERGY WITH SCALE FACTOR

2.7 kT=average photon energy, 27 kT lower limit for the highest-energetic fraction $\eta = n_b/n_{\gamma}$

ROUGH SKETCH OF COSMIC HISTORY

very early	quantum gravity phase	10 ⁻⁴³ s	10 ¹⁹ GeV	briefly, later		
	inflationary expansion	10 ⁻³³ s		J)	
	baryogenesis	?	10 ¹⁶ (?) GeV			
	quark confinement	10 ⁻⁶ s	200 MeV	Ĵ		
early	big bang nucleosynthesis	~ minutes	10 ⁹ K	<pre>we'll cover the basic physics presently!</pre>		
	recombination \Rightarrow CMB	$4 \cdot 10^5 \text{ yr}$	3 · 10 ³ K			
late	perturbations \Rightarrow large-scale structure	> 1 s]	next lecture	
	galaxy formation	> 0.1 Gyr			later lecture	

REACTION RATES IN THE EARLY-UNIVERSE PLASMA

How many reactions happen to a single particle per unit time?

Particle 1 (blue) radius r_1 , speed v; particless 2 (red) radius r_2 \Rightarrow cross-section $\sigma = \pi r^2$ with $r = r_1 + r_2$

If this is like playing pool: in time interval Δt , expect $n_2 v \sigma \Delta t$ reactions, where n_2 is the number density for particle species 2

Many particles of type 1: collision rate density (number per unit time per unit volume)

 $C = n_1 n_2 \langle u\sigma(E) \rangle_u$, with suitable "thermal average"

with $\sigma(E)$ the (energy-dependent) cross section (usually provided by nuclear/particle physics)

The number of reactions per particle of species 1 and reaction time scale τ_C :

$$\Gamma = \frac{C}{n_1} = n_2 \langle u\sigma(E) \rangle_u \quad \Rightarrow \quad \tau_C = \frac{1}{\Gamma} = \frac{1}{n_2 \langle u\sigma(E) \rangle_u}$$

Compare this with expansion time scale

$$\tau_H \equiv \frac{1}{H(t)} = \frac{a}{\dot{a}}$$

- 1. $\tau_H \gg \tau_C \iff \Gamma \gg H$ for reactions that establish thermal equilibrium: local Thermal Equilibrium (LTE): adiabatic (=isentropic) change from one temperature-dependent equilibrium to the next
- 2. $\tau_C \gg \tau_H \iff H \gg \Gamma$: freeze-out, particle concentrations remain constant (or change because of decay, or alternative reactions); temperature decouples.

BOUNDARY CONDITIONS FOR NUCLEOSYNTHESIS

Time scale 1:

Time scale 2:

Equilibrium protons and neutrons:

 $n + v_e \leftrightarrow p + e^$ $n + e^+ \leftrightarrow p + \bar{v}_e$

Cross-section from particle physics \Rightarrow weak interactions freeze-out at

 $t \approx 1$ s, $k_B T \approx 0.7$ MeV.

3-particle very rare \Rightarrow 2-particle reactions \Rightarrow all nucleosynthesis starts with deuterium

binding energy D is 2.2 MeV \Rightarrow begin nucleosynthesis at 27 k_BT < 2.2 MeV which means $T = 9.5 \cdot 10^8$ K, t = 110 s

BIG BANG NUCLEOSYNTHESIS (BBN)

Equilibrium at t = 1 s, $k_B T = 0.7$ MeV with $Q \equiv (m_n - m_p)c^2 = 1.293$ MeV:

$$\frac{n_n}{n_p} = \left(\frac{m_n}{m_p}\right)^{3/2} \exp\left(-\frac{Q}{k_B T}\right) \approx \frac{1}{6}$$

From then to t = 110 s: neutrons decay, with half-life $\tau_{1/2} = 614$ s:

$$\frac{n_n}{n_p} = \frac{1}{6} \left(\frac{1}{2}\right)^{110 \text{ s/614 s}} \approx \frac{1}{7}$$

With 14 p and 2 n, build 1 He-4 and 12 H

 \Rightarrow mass ratio Y = 0.25

TIME EVOLUTION OF ABUNDANCES DURING BBN

BBN COMPARISON WITH OBSERVATIONS

CMB: COSMIC (MICROWAVE) BACKGROUND RADIATION

Going back to thermodynamics: consider equilibrium for the reaction

 $H + \gamma \leftrightarrow p + e^-$

Non-relativistic formula for number density of particle species *i* in thermal equilibrium:

$$n_i = g_i \left(\frac{2\pi \, m \, k_B T}{h^2}\right)^{3/2} \, \exp\left(-\frac{m_i c^2 - \mu_i}{k_B T}\right),$$

with m_i mass, g_i degeneracy, μ_i chemical potential (all from Maxwell-Boltzmann)

Aspects we will not delve into, but accept:

■ in equilibrium, $\mu_H = \mu_p + \mu_e$, for (blackbody) photon gas $\mu_\gamma = 0$

• $g_e = g_p = 2$ (spin $\pm 1/2$) and $g_H = 1 + 3 = 4$ (spin 0 plus spin 1 state)

 $\frac{n_p n_e}{n_H} = \left(\frac{2\pi m_e k_B T}{h^2}\right)^{3/2} \exp\left(-\frac{B}{k_B T}\right) \text{ with binding energy } B = (m_p + m_e - m_H)c^2 = 13.6 \text{ eV}$ Charge neutrality $\Rightarrow n_e = n_p$, baryon number density $n_b = n_e + n_H$. Define ionization fraction: $x_e \equiv \frac{n_e}{n_e + n_{\rm H}}$, so that $\frac{x_{e}^{2}}{1-x_{e}} = \frac{n_{e}^{2}}{n_{H}(n_{e}+n_{H})} = \frac{n_{e}^{2}}{n_{H}n_{b}} \equiv f(T,n_{b})$

Baryon number density n_b can be expressed via critical density ρ_c and because of $a(t) \sim T$ as

$$n_b(T) = n_{b0} \left(\frac{T}{T_0}\right)^3 = \frac{\Omega_b \rho_c}{m_p} \left(\frac{T}{T_0}\right)^3$$

EQUILIBRIUM STATE FOR IONIZATION

RECOMBINATION AT WHAT REDSHIFT?

For the fairly realistic $\Omega_b h_{70}^3 = 0.05$: When does recombination happen?

x _e	0.1	0.5	0.9		
Т	3440 K	3770 K	4050 K		
Z	1260	1380	1490		
t	361 000 yr	316 000 yr	283 000 yr		

CMB FROM RECOMBINATION: MORE REALISTIC CALCULATION

Problem with the simplification: Photon gas treated as "heat bath" — but in reality, more photons of just the right energy to re-ionize (before they get redshifted out of resonance)

More detailed calculation:

- consider excited states in equilibrium with each other and with continuum
- rate equation for Ly α and for 2- γ -process 2S \rightarrow 1S
- cosmological redshift included

$$\Rightarrow$$
 $z_{rec} = 1100$, $T_{rec} = 3000$ K

What we have left out in our analysis so far (see lecture notes):

- neutrino background
- pair production ⇔ matter behaves like radiation
- baryogenesis
- quark confinement

What we will now briefly address:

- quantum gravity
- inflation phase

Heuristic derivation of Planck scale: What limits particle localization Δx ?

Wave function:

lpl

$$\Delta x \sim \lambda = rac{hc}{E} = 1.24 \cdot 10^{-15} \left(rac{E}{1 \text{ GeV}}
ight)^{-1} \text{ m}$$

Schwarzschild radius:

$$\Delta x = 2 \frac{2GM}{c^2} = \frac{4GE}{c^4} = 5.3 \cdot 10^{-54} \left(\frac{E}{1 \text{ GeV}}\right) \text{ m}$$
$$= \sqrt{\frac{\hbar G}{c^3}} = 1.62 \cdot 10^{-35} \text{ m}, \ E_{pl} = 1.22 \cdot 10^{19} \text{ GeV}$$

Current CMB photons: $k_B T = 0.25 \text{ meV}$ \Rightarrow Planck energy reached at $z = 5 \cdot 10^{22}$

Very, very early description requires *quantum gravity theory* (but we don't have a complete and consistent one...)

Candidate theories:

- String theory
- Loop quantum gravity

Both fundamentally inaccessible for experiments, *possibly* predictions for CMB inhomogeneity patterns

INFLATIONARY PHASE

Early phase of exponential expansion, meant to solve:

- Flatness problem
- Horizon problem
- Relic particle/monopole problem

Many different flavours/models:

- old/new inflation
- chaotic inflation

with current matter content produced via friction as inflation ends

... some models have by now ruled out through the study of CMB inhomogeneities

INFLATION AND THE HORIZON PROBLEM

Particle horizon in non-inflationary models too small!

- In the night sky (transversal) particle horizon for CMB is around 3°
- Lots of causally disconnected regions in the observed CMB!
- If we assume plasma had to find thermal equilibrium since
 Big Bang to produce CMB, we have a problem
- Inflationary phase
 - \rightarrow larger particle horizon
 - \rightarrow problem solved

Base image: ESA Planck

Introduce time-dependent critical density and time-dependent $\Omega(t)$:

$$\rho_c(t) = \frac{3H(t)^2}{8\pi G} \quad \text{and} \quad \rho(t) = \Omega(t)\rho_c(t)$$

First-order Friedmann equation:

$$\Omega(t)-1=\frac{kc^2}{R_0^2(aH)^2}.$$

Specialize to absolute values, so that in a universe that is not identically flat,

$$|\Omega(t) - 1| = rac{c^2}{R_0^2 (aH)^2}.$$

Evolution of $|\Omega(t) - 1|$ in simple universe models:

- Are you worried about fine-tuning? (Not everyone is.)
- Unless k = 0 identically, $|\Omega(t) 1|$ must initially have been very small!
- Solution: initial exponential phase naturally brings $|\Omega(t) 1|$ far down.

Generic prediction Grand Unified Theories (GUTs): Stable particles (notably magnetic monopoles), $m \sim 10^{16}$ GeV, sufficient numbers for $\Omega \gg 1$.

Why are there so few of them, then?

Upper limits rather low:

$$\frac{n_{monopole}}{n_b} < 10^{-29}.$$

Inflation after GUT phase: thins relic particles out

MACRO detector collaboration (Gran Sasso Laboratory), 1998-2000

Particularly interesting: inflation models make fairly generic predictions for CMB, density perturbations:

- post-inflation *T*: below Planck scale, < 10¹⁹ GeV
- super-horizon fluctuations
- quantum fluctuations: adiabatic, not isocurvature perturbations
- density fluctuations power spectrum $P(k) \sim k^n$, with power-law index *n* close to 1
- primordial waves ⇒ B-modes in CMB polarisation

 \Rightarrow more about (some of) this in the next lecture

User Amble on Wikimedia Comnons: Dark Sector Laboratory at Amundsen-Scott South Pole Station. Left: South Pole Telescope. Right: BICEP2 under license CC BY-SA 3.0

29

SUMMING UP

