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WHAT WE DID IN PART 1

Model set-up for isotropic, homogeneous universe
Scale-factor expansion

Light propagation in an expanding universe
Cosmological redshift

How densities scale with a(t)

Friedmann equations (first and second order)

Next: How to solve

a2 + Kc? _ 871G
a2 3

) a
p and p=-3(p+p/c*)_




EVOLUTION OF NON-INTERACTING MIX OF MATTER

Revisiting three kinds of content (matter, radiation, dark energy):

Name ‘ index ‘ scaling behavior
matter m | pm(t) ~ a(t)3
radiation ro | pr(t) ~a(t)™

darkenergy | A | pa(t) ~ const.

Assume non-interaction < total density sum of partial densities:

Considerable simplification: make Friedmann equation dimensionless

by introducing critical density

P = Pm + Pr+ PA

3H;
Pe = 8rG



OMEGA PARAMETERS

Scaling behavior from current value, at time ty, rescale using critical density:

-3

Pm(t) = Qm‘Pc‘(%)
pm(to)

_ a(t) \™

) = s (G5)
pr(to)
p/\(t) = Q/\'Pc

KCZZKR—CQ2 = —Qk-[a(ty) Ho]2




DIMENSIONLESS FRIEDMANN EQUATION

With x(f) = % - lz and H(t) = %

first-order Friedmann equation
a? + Ke? _ 8rnG
a2 3

0

becomes
H(t)? = HE [Qa + Qk x 2+ Qmx 2 + Q, x 74|

or

dx
dt = f .
f Ho x QA + QX2 + Qmx=3 + Q, x4

Simple integral — call in the mathematicians!




ELIMINATING 2k IF NECESSARY

Present-time Friedmann equation: x = 1, so

QA+ QK + Q2 + 2, =1
Consequences: Omegas not independent, we can eliminate Qk
Rewrite Qk in terms of k, with Q = Qp + Qm + Q-

K — (a(to) Ho Ro
C

)2 (9-1)

Evidently, the sign k is related to the ratio 2 of total and critical density.
But what does it mean?




WHAT OUR SIMPLIFICATION MISSES

When derived from the Einstein field equations, k has a specific
geometric meaning: at fixed time t,
with curvature radius Ry = ¢/(Ho ao VIQk|),

k = +1 spherical space: L = a(t) Ry sin [—RO ;(t)] -A¢

k=0 Euclidean space: L=r-A¢
k = -1 hyperbolical space: L = a(t) Rysinh [W] WAY)

r A
|,
B

with r, L physical distances
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SIMPLE EXAMPLE: 2D SPHERE

ris part of a great circle on the spherical surface.

View from the side:

For 0 in radians: r = Rg - 6,
while with this setup L = Rg sin 8 A¢, so

L= Rosin[RLo]-Aqs




(GEOMETRY IS RELATED TO MASS-ENERGY CONTENT

Scaled by the critical density, mass density determines geometry:

Q>1 & k=+1 spherical space
Q=1 & k=0 Euclidean space
Q<1 & k=-1 hyperbolical space




MISCONCEPTIONS ABOUT CRITICAL DENSITY AND GEOMETRY (MOSTLY OLDER TEXTS)

Q>1 & spherical, finite, cosmos will collapse

Q=1 <& Euclidean, infinite, cosmos will keep expanding
Q<1 <& hyperbolical, infinite, cosmos will keep expanding

Synonyms in older texts: finite = “closed universe”,
infinite = “open universe”

Q controls local geometry only

local geometry does not determine topology

direct prediction for collapse or not only for A = 0

k = 0: 10 finite, 8 infinite homogeneous spaces (Riazuelo et al. 2004)
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k = +1: countably infinitely many homogeneous spaces, all finite (Gausmann et al. 2001)
k = —1: uncountably inifinitely many, some finite, some infinite (Cornish et al. 1998)


https://ui.adsabs.harvard.edu/abs/2004PhRvD..69j3518R/abstract
https://ui.adsabs.harvard.edu/abs/2001CQGra..18.5155G/abstract
https://ui.adsabs.harvard.edu/abs/1998astro.ph..1212C/abstract

ACCELERATION IN EXPANDING UNIVERSES

Second-order Friedmann equation:

a 4G 5
_—= —— 3 = —
2 3 (0 +3p/c)

4nG

3

(om +2pr —2pp) = ——-

Hj [Qm

2 | x8

In our model, only Q4 can drive (positively) accelerated expansion

— not as “negative mass’, but via pressure!

For a universe that started small:
initial momentum + deceleration
can carry into acceleration phase
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RE-COLLAPSE POSSIBLE?

First-order Friedmann equation (let’s ignore €, think big scales):
H(t)? = H3[Qn + QX2 + Qpn x7°)]
Initial expansion followed by recollapse = H(t;,) = 0 for some turning-point time fy,
Turning point possible means
A+ Qx4+ Qnx3=0 = NP+ QUx+Q=0

For Q2 = 0: Turning-point scale factor is

Xip = Qm

and xy > 0 requires Qn > 1, density larger than critical density. 25 # 0 more complicated.



THE INITIAL SINGULARITY

Second-order Friedmann equation:

2
__
a 2

Qn 2Q
X3

r
+7—2QA

|

For expanding universes where A does not dominate

completely, a/a < 0.

H(t)? = H3 [Qa + Qk x 72+ Qm x~2 + Q, x 74|

shows H(t) grows = a(t) ever steeper in the past

Curve ends at some a(tin;) = 0:
initial (Big Bang) singularity

Special case Hawking-Penroses singularity theorem

texp tini tO

(Wlth texp =1 - 1/H0)



SMALL, RADIATION-DOMINATED UNIVERSE

t X

t— f dt = f dx’
) S Hox' v+ Qk () 2+ Qn () 2+ 2 () *
At small scales x < 1, radiation term dominates — neglect all other terms:
t X X
dx’ 1 L, X2
5 S Hox' vQr (x')~* Ho V2 - 2Ho V2,

Evolution of scale factor (flat radiation-only would be €, = 1):

a=ag\2Ho VQ t < Vt.
Age of the universe if this were the only contribution until the present (it's not):

;
- 2HoQ,

fo




FLAT MATTER-ONLY UNIVERSE

t X

dx’

- f dt f .
X . Ho x* QA + Qk (x')72 + Qm (x') 3 + Q (x')*

Flatness and matter-only means 2, = 1, all other omegas zero:

so that

Age of the universe:




DE SITTER UNIVERSE

t X ,
t—ty = fdt - f dx .
. ) Ho X' QA+ Qk (X)) 2 + Qm (x) 8 + Qr ()4

Only non-zero contribution Q4; flat universe = Qp = 1.
To avoid divergence: integrate from present-day fp, x = 1:

t X

HO-(t—to):Hofdt:fd%:m(x)

fo 1

so that
a=a EXp(Ho[t - to])

Infinitely old universe — no initial time with a(tj,;) = 0!



OUR OWN UNIVERSE

3.0

Current values:
ty = 13.8-10° a; Hy = 67.9 km/s Mpc™";
Qa = 0.683; Q,, = 0.317, Q, = 0.00005
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OUR OWN UNIVERSE VS. APPROXIMATIONS FITTED AT t()
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DISTANCES IN AN EXPANDING UNIVERSE

m just quote the redshift z, very practical and directly observable
m comoving distances, good for tagging galaxies

m proper distances = comoving distance, if at time t # fy rescaled with scale factor
(what | called "physical distances” above)

m lookback time = light travel time (light-years!)
m distant objects get dimmer = luminosity distance d;
m distant objects appear smaller = angular distance da

Next: let’s try to express all these distances in terms of redshift z!




LOOKBACK TIME/LIGHT TRAVEL TIME IN TERMS OF REDSHIFT Z

From the Friedmann equation, we had the lookback time equation

t X

dx’
t—th = fdt :f
) Hox! v+ Qi (X)) 2 4 Qm (x) 73 + Qr (x) 4

fo

Obtain light-travel-time distance dj = c(fp — t), with ty — t lookback time:

a(t) 1 dx 1

Change of variables x = —% = i
2 a(t) 1+z dz (1+2)2
c
= di =c(to—1) _ﬁf
0
With E(2) =\ + Q« (1 +2)2 + Qn (1 + 2)° + (1 + 2)*




COMOVING DISTANCE (EVALUATED AT I = [y) IN TERMS OF REDSHIFT Z

We had seen that

to

decomov = C a(fo)f

te

dt
m.

To rewrite in terms of z at emission time t;, we make several changes of variable:

a(t)

da da
E = H(t)a(t) = dcomov = C a(to) f a2H(a)
a(te)
:
= 2 o [
—a(ty) da  a(to) o e
X




COMOVING DISTANCE (EVALUATED AT I = fy) IN TERMS OF REDSHIFT Z 2

Friedmann equation H(x) = Hp - E(x), with E(x) = vQA + Qk X2 + Qm x=3 + Q, x4, so

:
d - if dx
comov — HO X2 E(X)
X

Change of variable from x to z:

brings us to




PARTICLE HORIZON

Particle horizon = comoving distance light can have travelled since the Big Bang:

c r dz’ ,
dcomov.ph :ﬁofE(Z’) with E(z) = \/QA+QK(1 F 224 Qn(1+ 2% +Q (1 +2)4
0

Matter-only universe (radiation-dominated is not better):
dcomov,ph = finite (see today’s exercise!)
Dark-energy-dominated-universe:

dcomov,ph =

By giving our own universe an early exponential phase, we can increase dcomov.ph!




TRANSVERSE COMOVING DISTANCE

Consider Hubble-flow object transversally separated by L:

r A
B
Present-time values define transversal proper distance d, at present time f; as:

L:dJ_’(Y

From the earlier statement about spatial geometry, evaluated at t = tp, we know

C H dcomov —
m%mFmmemm]fmk_+1

dL = dcomov fOF k = 0

_C ¢ __ Coomov —
%mm%%mhw_1




ANGULAR DIAMETER DISTANCE

Like transversal-comoving, but rescaled so we obtain the distance L between two
Hubble-flow objects at light emission time t, corresponding to cosmic redshift z:

r A
G« Cattmet
B

Call this angular diameter distance da; from the previous formula for dzomov
we simply need to rescale L by 1/(1 + z) to obtain the distance at time t,:

sin for k = +1

1 d'
d VIQ f where Sk =4 id fork=0
N l o

sinh for k = —1



LumiNoSITY DISTANCE: How OBJECTS GET DIMMER 1

/ Ap A .\

A¢

Small square patch light from object at O
in solid angle A¢? spreads out over detector area

A=d2 A¢?

Initial energy output: luminosity L, energy per second,
proportion of photons arriving at A is
Ag? A
4 4nd,2
Two additional effects:
m photon energy redshifted, E — E/(1 + z)

m Photon arrival rate time-dilated,
additional factor 1/(1 + z)

25



LuMiNOSITY DISTANCE: How OBJECTS GET DIMMER 2

Bolometric flux for observer:

// \\\_ F o L
' bol = 4rnd?(1 4 2)2
:' 0 J define luminosity distance
T do=di(1+2)=da(1+2)>
y so that
h 1/ Fbol = L
g 47le_2




COSMOLOGICAL DISTANCES: SUMMARY

Light-travel time distance

z

0

@ dz’
d/n=C(to—t)—ﬁOfW

Comoving radial distance

2

0

c dz’
dcomov = H_O f m

Comoving transversal distance

V4
© dz’
d, = ——=S5«| VIQ f—

“ 7 Ho VI “[ | K'O E(z')

sin for k = +1
where Sk = id fork=0
sinh  for k = —1

Angular diameter distance
d.
1+2z

da =

Luminosity distance

G = (1 +Z)dl = (1 +Z)2dA

with  E(z) = \/QA+QK(1 + 22+ Qn(1+23+Q (1 +2)




How To DETERMINE THE VARIOUS DISTANCES IN PRACTICE

Use Ned Wright's Javascript cosmology calculator (everyone else does!):

Enter values, hit a button

(696 | H,
[0.286 Omegay
[3 | z

0714 | Omegage
\'General

Open sets Omegay,. = 0 giving an open Universe [if you
entered Omegayg < 1]

Flat sets Omegay,c = 1-Omegay giving a flat Universe.
General uses the Omegay, that you entered.

Source for the default parameters.

For H, = 69.6, Omegay; = 0.286, Omega,,. = 0.714, z = 3.000

e It is now 13.721 Gyr since the Big Bang.

o The age at redshift z was 2.171 Gyr.

o The light travel time was 11.549 Gyr.

o The comoving radial distance, which goes into Hubble's law, is 6481.3 Mpc or 21.139 Gly.
e The comoving volume within redshift z is 1140.389 Gpc3.

o The angular size distance D4 is 1620.3 Mpc or 5.2846 Gly.

¢ This gives a scale of 7.855 kpc/".

o The luminosity distance Dy, is 25924.3 Mpc or 84.554 Gly.

1 Gly = 1,000,000,000 light years or 9.461*1026 cm.
1 Gyr =1,000,000,000 years.
1 Mpc = 1,000,000 parsecs = 3.08568*1024 cm, or 3,261,566 light years.

https://www.astro.ucla.edu/ wright/CosmoCalc.html — cf. Wright, PASP, 118, 1711 (2006)


https://www.astro.ucla.edu/~wright/CosmoCalc.html
https://ui.adsabs.harvard.edu/abs/2006PASP..118.1711W/abstract

DIFFERENT NOTIONS OF DISTANCE
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DISTANCE-REDSHIFT RELATION

Assuming we know (from balloon experiments) that k = 0, flat universe,
we neglect radiation = Qp =1 - Q..

Simplest standard candle: absolute magnitude M = const.

Distance modulus for flux = use luminosity distance d; to obtain apparent brightness m:

V4
d.(z G dz’
M+5|Og10|:£:| = M+5|Og10 m(1 —f—Z)fm
0

m(z) 10 pc

dz’

(1+z)f +C
X VOm(1+ 23 +1-Qn

5logyo

which leaves us two parameters 2, and C to fit!



DISTANCE-REDSHIFT RELATION OBSERVED
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Fitting supernova data from the Supernova Cosmology Project, Suzuki et al. 2012



https://www-supernova.lbl.gov/
https://ui.adsabs.harvard.edu/abs/2012ApJ...746...85S/abstract

NEXT STEP

texp tini Iy

(Wlth texp = to - 1/H0)

The models tell us: our universe was initially very dense, crowded — what was that like?
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