Terrestrische Planeten

Das Sonnensystem und seine fernen Verwandten für Nicht-Physiker

Markus Pössel

Haus der Astronomie

11.12.2018

Übersicht

Sterne vs. Planeten, Sonnensystem-Edition

Bild: NASA

Bild: NASA, ESA, A. Simon (GSFC)

Bild: SOHO (ESA & NASA)

	Erde	Jupiter	Sonne
Radius:	1	11	109
Masse:	1	320	333000
Dichte:	1	0.24	0.26
Effektivtemperatur:	255 K	88 K	5777 K
Leuchtkraft:	10^{-10}	10^{-9}	1

Terrestrische Planeten

Energiebilanz

Bild: NASA/JPL

Bild: NASA

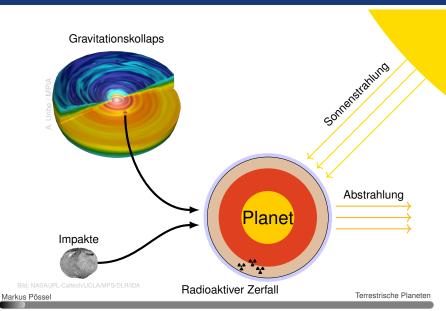


Bild: NASA/JPL-Caltech/ University of Arizona

	Merkur	Venus	Erde	Mars
rel. Radius:	0.38	0.95	1	0.53
rel. Masse:	0.06	0.82	1	0.11
rel. Dichte:	0.99	0.95	1	0.71
Dichte [g/cm ³]	5.4	5.2	5.5	3.9
unk. Dichte:	5.3	4.4	4.4	3.8
Sonnenabstand:	0.39	0.72	1	1.52

Unkomprimierte Dichte: Kompression durch Gravitation herausrechnen

Energiebilanz

Strahlungsbilanz Teil 1

Energiebilanz

Übersicht

Einfache Rechnung: Sonne und Planet als thermische Strahler mit Effektivtemperatur T_{eff} — dann

$$L_{\odot} = 4\pi R_{\odot}^2 \cdot \sigma_{SB} T_{eff,\odot}^4$$

und Intensität der Sonnenstrahlung (Energie pro Zeiteinheit pro [Auffang-]Flächeneinheit) am Ort des Planeten (Abstand d_P von der Sonne)

$$I_P = \frac{L_{\odot}}{4\pi d_P^2} = \sigma_{SB} T_{eff,\odot}^4 \cdot \left(\frac{R_{\odot}}{d_P}\right)^2.$$

Reflektion: Albedo A gibt Bruchteil von Strahlungsleistung an, der reflektiert wird. Ankommende Strahlungsleistung:

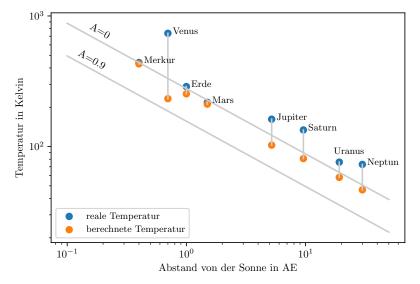
$$L_{in,P} = \pi R_P^2 (1 - A) \sigma_{SB} T_{eff,\odot}^4 \cdot \left(\frac{R_{\odot}}{d_P}\right)^2.$$

Strahlungsbilanz Teil 2

Übersicht

Abstrahlung des Planeten selbst:

$$L_{out,P} = 4\pi R_P^2 \varepsilon \sigma_{SB} T_{eff,P}^4.$$


mit ε der Emissivität, für unsere Zwecke $\varepsilon \sim 1$

Im Gleichgewichtszustand $L_{out,P} \stackrel{!}{=} L_{in,P}$, und damit

$$4\pi R_P^2 \varepsilon \sigma_{SB} T_{eff,P}^4 \stackrel{!}{=} \pi R_P^2 (1-A) \sigma_{SB} T_{eff,\odot}^4 \cdot \left(\frac{R_\odot}{d_P}\right)^2$$

$$\Rightarrow T_{eff,P} = T_{eff,\odot} \left(\frac{1-A}{4\varepsilon}\right)^{1/4} \sqrt{\frac{R_{\odot}}{d_P}} = 278 \text{ K} \left(\frac{1-A}{4\varepsilon}\right)^{1/4} \sqrt{\frac{1 \text{ AE}}{d_P}}$$

Temperaturen von Planeten

Übersicht

Energiebilanz

Selektive Durchlässigkeit der Erdatmosphäre

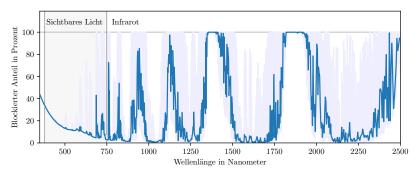
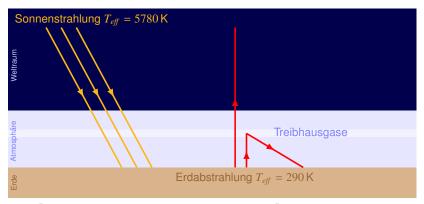


Diagramm nach Daten des TAPAS-Web Service http://cds-espri.ipsl.fr/tapas/, Bertaux et al. 2014

Grundlegende Einschränkung für Astronomen:


- UV. Röntgen direkt nur mit Weltraumteleskopen
- Bestimmte Infrarotbereiche nur in großer Höhe/Weltraum/Flugzeug
- Sichtbares Licht, Nahinfrarot, Radio gut vom Boden aus

Treibhauseffekt

Übersicht

Reale Temperaturen bei Planeten mit nennenswerter Atmosphäre höher als aus Strahlungsgleichgewicht berechnet.

Hintergrund: Treibhauseffekt

[Realität komplizierter: Wolken in unterschiedlichen Höhen, Erde/Ozeane u.a.]

Übersicht

Treibhauseffekt

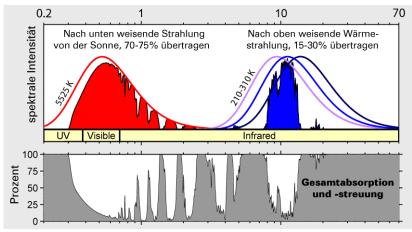


Bild: "Von der Atmosphäre übertragene Strahlung" von Robert A. Rohde via Wikimedia Commons. Eigene Veränderungen: nur obene Hälfte gezeigt, ohne Überschrift. Lizenz: CC BY-SA 3.0

Energiebilanz

Energie aus Entstehungsprozess

Energie aus Kollaps aus protoplanetarer Scheibe: Potenzielle Energie umgewandelt in Wärme

Auf bereits vorhandene Kugel mit Dichte ρ und Radius r eine weitere Schicht der Dicke $\mathrm{d} r$ und gleicher Dichte auftragen:

$$dE_K = dm \cdot \frac{GM(r)}{r} = 4\pi r^2 \rho G dr \cdot \frac{4}{3}\pi \rho r^2 = \frac{16\pi^2 G}{3} \rho^2 r^4 dr$$

Aufintegrieren von 0 bis *R*:

$$E_K = \int_{0}^{R} dr \frac{16\pi^2 G}{3} \rho^2 r^4 = \frac{16}{15} \pi^2 G \rho^2 R^5 = \frac{3GM^2}{5R}$$

– bei konstanter Dichte ρ (Vereinfachung)

Krater

Energiebilanz

Energie aus Entstehungsprozess

Innenleben/Magnetfeld

Für terrestrische Planeten: Kollapsenergie E_K , einfallende Sonnenstrahlung über ein Jahr E_{S1a}

	Merkur	Venus	Erde	Mars
E_K [J]	$2\cdot 10^{30}$	$2\cdot 10^{32}$	$2\cdot 10^{32}$	$5\cdot 10^{30}$
E_{S1a} [J]	$5\cdot 10^{24}$	$2\cdot 10^{24}$	$4\cdot 10^{24}$	$5\cdot 10^{23}$
E_K/E_{S1a}	$4 \cdot 10^5$	10^{8}	$5 \cdot 10^7$	10^{7}

Vergleiche E_K/E_{S1a} mit Alter des Sonnensystems: $4.5 \cdot 10^9$ Jahre

Tatsächliche Wärmeflüsse (Dye 2012):

$$(11...39) \cdot 10^{12}$$
 W (Radioaktivität) + $(5...38) \cdot 10^{12}$ W (Kollaps) = $(43...49) \cdot 10^{12}$ W (gesamt)

Markus Pössel

Übersicht

Allgemein drei Dichtezonen:

- **Kern** (am dichtesten, oft Eisen)
- Mantel (weniger dicht, Silikate/Magnesium)
- Kruste (am leichtesten)

Merkur

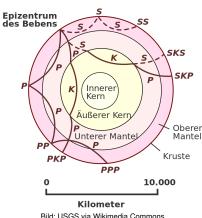
sehr großer Kern - Folge einer Kollision?

Venus

vergleichsweise dicke Kruste (ca. 70 km)

Erde

Plattentektonik 7 große, ~ 45 kleine


Mars

Zwei-Plattentektonik?

Übersicht

Innenleben — woher weiß man's?

- Seismische Wellen: Ausbreitungsgeschwindigkeiten, Brechung, an Grenzen flüssig (nur P) vs. fest (P & S) (vgl. Mars InSight)
- Gravitationsfeld vermessen: Umlauf der Sonde, Radio-Abstandsmessung
- Merkur: Leichte Variationen der gebundenen 3:2 Rotation/Libration um die Sonne

Abkühlung

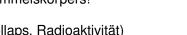
Übersicht

Im Mantel ggf. Konvektion

• Kruste: Wärmeleitung

Vulkanausbrüche/austretende Lava

Schlüssel: Größe des Himmelskörpers!


Vorhandene Energie (Kollaps, Radioaktivität)

$$\sim V = \frac{4}{3}\pi R^3$$

Abstrahlung ins All

$$\sim F = 4\pi R^2$$
.

Auskühl-Zeitskala ~ 1/R (vgl. Babies)

Sonnensystem+

Markus Pössel

Terrestrische Planeten

Energiebilanz Innenleben/Magnetfeld Vulkanismus Krater Atmosphäre/Erosion Sonnensystem+

Magnetfeld

Übersicht

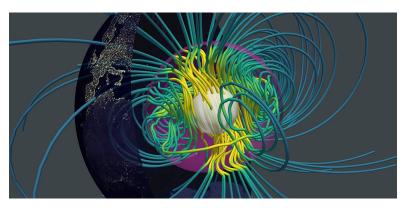


Bild: N. Schaeffer/ISTERRE (Schaeffer et al. 2017)

Dynamo: Selbstverstärkendes Magnetfeld durch hinreichend schnell rotierendes, elektrisch leitendes Inneres (äußerer Kern) und Konvektion (Wärmetransport durch Massentransport)

Energiebilanz (Innenleben/Magnetfeld) Vulkanismus Krater Atmosphäre/Erosion Sonnensystem+

Magnetfeld und Sonnenwind

Übersicht

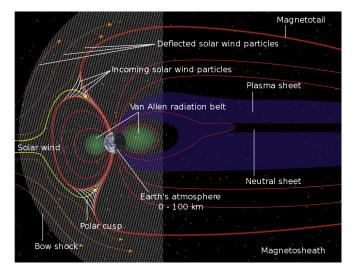


Bild: NASA via Wikimedia Commons, SVG-Version: Aaron Kaase

Energiebilanz (Innenleben/Magnetfeld) Vulka

Terrestrische Planeten: Magnetfelder

Übersicht

Bild: NASA/JPL

Bild: NASA/JI

Bild: NASA

Bild: NASA/JPL-Caltech/ University of Arizona

- Merkur: Schwaches Dipol-Magnetfeld, Magnetosphäre: Flüssiger Kern mit Dynamo? Oder "eingefrorener" Rest?
- Venus: Kein Kern-Magnetfeld fehlende Konvektion und/oder zu langsame Rotation
- Erde: äußerer Kern geschmolzen, vergleichsweise rasche Rotation (Mondentstehung!), Konvektion
- Mars: frühes Magnetfeld, jetzt nicht mehr fehlender Dynamo: fehlende Konvektion, komplett flüssiger Kern (→ InSight-Mission)

Energiebilanz Innenleben/Magnetfeld (Vulkanismus) Krater Atmosphäre/Erosion Sonnensystem+

Vulkanismus und Tektonik

Übersicht

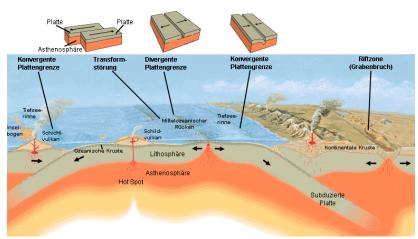
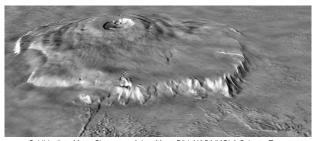



Bild: USGS/USGov, modified by Eurico Zimbres and User TomCatX, via Wikimedia Commons

Energiebilanz Innenleben/Magnetfeld (Vulkanismus) Krater Atmosphäre/Erosion Sonnensystem+

Vulkanismus

Übersicht

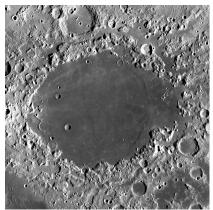
Schildvulkan Mons Olympus auf dem Mars. Bild: NASA/MOLA Science Team

- Abhängig von Krustendicke
- Lava-"Flutung" kann Oberflächen erneuern (z.B. Mare auf dem Mond)
- Eintrag von Gasen in die Atmospäre
- Klima-Beeinflussung durch Aerosole
 (z.B. Temperaturreduktion > 0.5°C durch Krakatau-Ausbruch 1883)

Energiebilanz Innenleben/Magnetfeld Vulkanismus (Krater) Atmosphäre/Erosion Sonnensystem+

Krater

Übersicht


Film: Astronomiekurs Science Academy BW 2012

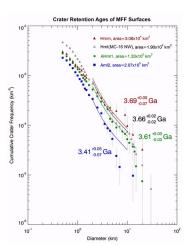
Namenloser Krater, Durchmesser 1.8 km. LRO-Aufnahme vom 3.11.2018. Bild: NASA/GSFC/Arizona State University

Terrestrische Planeten

Krater und Oberflächenerneuerung

Übersicht

Mare Crisium, Durchmesser 560 km. Bild: NASA's Lunar Reconnaissance Orbiter via Wikimedia Commons



Manicouagan Impact Structure, Quebec. 5 km-Meteorit ca. 214 Millionen Jahren. Bild: NASA/GSFC/LaRC/JPL, MISR Team

Krater

Kraterstatistik

- Krater sammeln sich mit der Zeit an
- Kumulative Statistik ermöglicht Abschätzung Zeitpunkt der letzten Erneuerung
- Kalibration der Relation durch Mondregionen mit radioaktiver Altersbestimmung
- Extrapolation auf innere Planeten bis Mars
- Verallgemeinerung auf äußeres Sonnensystem schwierig — Zusatzannahmen nötig

Kraterstatistik Medusae Fossae Formation, Mars. James R. Zimbelman and Stephen P. Scheidt, Smithsonian Institution

Terrestrische Planeten

Erosion

Minimal-Oberflächenveränderungen:

Mechanische Einwirkung und Wärmeeeinwirkung von Einschlägen sowie hochenergetische Sonnenstrahlung erzeugen Regolith als nicht-irdisches Lockermaterial

Apollo 17-Mission der NASA, Taurus-Littrow-Region des Mondes

Energiebilanz Innenleben/Magnetfeld Vulkanismus Krater (Atmosphäre/Erosion) Sonnensystem+

Erosion

Übersicht

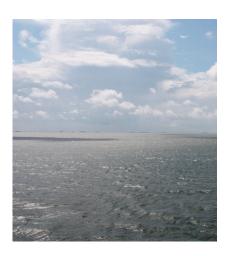
Bild: Alluvial Plain von Matt Affolter via Wikimedia Commons unter CC BY-SA 3.0

Strömungsmuster im Kasei Valles, Mars, als Spuren früheren fließenden Wassers.

Bild: NASA/JPL-Caltech/Arizona State University

Erosion allgemein: Zersetzung durch Wasser, Eis, Wind

Charakteristische Formen und Muster: Abbruchkanten, Strömungsmuster, Dünenketten


Auf der Erde zusätzlich: Spuren von Leben (Pflanzen, Moose, ...)

Atmosphäre

Energiebilanz

Übersicht

- Haltbarkeit abhängig von Größe, Sonnennähe, Magnetfeld (Teilchenstrom)
- Chemische Zusammensetzung beeinflusst durch Vulkanismus
- Kreisläufe und Gleichgewichte (z.B. CO₂ auf der Erde im Wasser gelöst)
- Erde: Einfluss von Leben (Sauerstoff-Atmosphäre: Blaualgen vor 3.5 Mia. Jahren, Bindung von Kohlenstoff in Skeletten/Schalen)

Sonnensystem+

Merkur

Übersicht

- Großer Kern: Impakt? Entstehung in Sonnenähe?
- Schwaches Magnetfeld
- Planet im Laufe der Zeit geschrumpft
- So gut wie keine Atmosphäre Krater erhalten
- 3:2 gekoppelte Rotation

Sonnensystem+

Bild: NASA/JPL

Venus

Übersicht

- Zusammengewachsene zwei Platten
- Zahlreiche ehemalige Vulkane
- Unerwartet wenige Krater –
 Oberflächenerneuerung vor rund 500 Mio.

 Jahren
- Kein Kern-Magnetfeld
- Treibhauseffekt in dichter CO₂-Atmosphäre mit Schwefelsäurewolken

Bild: NASA/JPL

Energiebilanz Innenleben/Magnetfeld Vulkanismus Krater Atmosphäre/Erosion (Sonnensystem+)

Erde

Übersicht

- Vielfältige Plattentektonik
- Flüssiges Wasser: Verstärkte Erosion
- Magnetfeld aus Geodynamo schützt vor Teilchenstrahlung

Bild: NASA

Mars

Übersicht

- Früher Magnetfeld, jetzt Reste
- Schildvulkane
- Zwei-Platten-Tektonik
- Spuren von Wasser aus Frühzeit. Heute noch versteckte Reservoirs?

Bild: NASA/JPL-Caltech/

Was ist außerhalb?

Energiebilanz

Übersicht

Vergleichbare Prozesse bei erdähnlichen Planeten — oder doch noch etwas ganz Neues?

Detailaufnahmen fehlen — Modellierung wichtig

Skalierung jenseits des Sonnensystems, Beispiel Wasserplaneten:

Bei konstantem Volumenanteil f_W des Wassers skaliert mittlere Wassertiefe wie

$$d = R_P[1 - (1 - f_W)^{1/3}]$$

mit R_P Planetenradius (Erde $f_W = 0.001$ und d = 2 km)

...in Wirklichkeit allerdings deutlich komplizierter (z.B. Wasser in Ringwoodite im Erdmantel, Pearson et al. 2014)

Fazit

Übersicht

- Terrestrische Planeten: Solide Oberfläche, ggf. dünne Atmosphäre
- Energiebeiträge
 - Entstehung
 - Impakte
 - Radioaktivität
 - Einstrahlung
- Wenige Grundprozesse am Werke:
 - Tektonik
 - Einschläge
 - Vulkanismus
 - Erosion
- Größe als Schlüsselfaktor: thermische Entwicklung, Magnetfeld
- Atmosphäre abhängig von Chemie, Sternabstand, Größe