Kosmologie II: Urknallphase

Vom Schwarzen Loch bis zum Urknall: Einsteins Astrophysik für Nicht-Physiker

Markus Pössel & Björn Malte Schäfer

Haus der Astronomie/Institut für Theoretische Astrophysik

21.1.2016

Inhalt

2 Kosmische Hintergrundstrahlung

8 Konsequenzen f ür das fr ühe Universum

Markus Pössel & Björn Malte Schäfer

Zurückverfolgen

Kosmische Expansion zurückverfolgen:

$$rac{d}{dt}=-rac{4\pi G}{3}(
ho+3p/c^2)$$

heißt auch: Wenn frühe Phase des Kosmos, in der die Dunkle Energie nicht dominiert, dann singulärer Anfang, a(t) = 0:

Zur Singularität später, hier wichtig: Wenn wir weit genug zurückgehen, war das Universum beliebig dicht.

Markus Pössel & Björn Malte Schäfer

Kosmische Kompression

Allgemein für Kompression und zunehmende Dichte: Erster Hauptsatz der Thermodynamik sagt

 $\mathrm{d}U = \delta Q - p\mathrm{d}V$

für *U* innere Energie des Systems, δQ die zugeführte Wärmemenge, *p* Druck und *V* Volumen. Für das ideale Gas aus *N* Teilchen:

$$U = \frac{3}{2} N k_B T$$

mit T (absoluter) Temperatur, k_B Boltzmannkonstante.

Thermisches Gleichgewicht und Strahlung

$$U = \frac{3}{2}Nk_BT$$

zeigt bereits an: Jeder Freiheitsgrad mit $\sim kT$ angeregt.

Aber: Auch das elektromagnetische Feld hat Freiheitsgrade, die angeregt werden können, Ergebnis: Wärmestrahlung!

Wo ist die Wärmestrahlung aus dem frühen Universum?

Kosmische Hintergrundstrahlung

Wir hatten bei unserer kosmischen Bestandsaufnahme gesehen: Sterne, Galaxien etc. sind hinreichend entfernt voneinander, dass wir vergleichsweise ungestört weit in die Ferne (d.h. in die Vergangenheit) sehen können.

Legt nahe: Können wir die Wärmestrahlung aus der frühen heißen Phase heute noch sehen?

Diese Strahlung heißt **kosmische Hintergrundstrahlung** (nicht zu verwechseln mit "kosmische Strahlung"– letzteres ist die Teilchenstrahlung aus den Tiefen des Weltalls)

Planck-Strahlung und Skalenfaktor-Expansion

Einfaches Argument: Energiedichte von Strahlung geht wie

$$e \propto \frac{1}{a(t)^4}$$

- Begründung: für jedes einzelne Photon Rotverschiebung $E = hv = hc/\lambda \propto 1/a(t)$, und Photonendichte geht wie $1/a(t)^3$ (wie alle Teilchendichten).

Aber bei Planck-Strahlung: Energiedichte ist

$$e = \frac{4\sigma}{c}T^{\prime}$$

(Stefan-Boltzmann-Gesetz). Dementsprechend geht die Temperatur der Wärmestrahlung wie

$$T\sim rac{1}{a(t)}.$$

Planck-Strahlung und Skalenfaktor-Expansion

Genauere Betrachtung der Energiedichte im Wellenlängenbereich λ und $\lambda + d\lambda$ bei Temperatur *T*,

$$B(\lambda,T)=8\pi hcrac{\lambda^{-5}}{\exp(hc/\lambda kT)-1}.$$

zeigt, dass das Planck-Spektrum in der Tat seine Form beibehält, mit

$$T\sim \frac{1}{a(t)}.$$

Markus Pössel & Björn Malte Schäfer

Hintergrundstrahlung: Wonach suchen?

Thermische Strahlung, während kosmischer Expansion mit $T \sim 1/a$ abgekühlt.

Überlegungen zur Nukleosynthese (kommt bei uns erst später!) legten nahe: Heutzutage sollte $T \sim 1 - 15 K$ sein. Maximum liegt dann bei

200 – 3000 μm

im Mikrowellenbereich – daher auch *kosmischer Mikrowellen-Hintergrund*, englisch *cosmic microwave background (radiation)* (CMB).

Sollte uns, so denn das Universum homogen/isotrop ist, aus allen Richtungen gleichermaßen erreichen. (Einzige Verzerrung: Vordergrundquellen wie Milchstraße, andere Galaxien etc.)

Entdeckung Hintergrundstrahlung: Penzias & Wilson

Markus Pössel & Björn Malte Schäfer

Entdeckungsgeschichte Hintergrundstrahlung

1940er erste Vorhersagen: George Gamow, Ralph Alpher, Robert Herman

- **1964** neue Vorhersage: Robert H. Dicke, James Peebles
- 1965 Zufallsentdeckung durch Arno Penzias und Robert W. Wilson
- **1989-93** COBE (Cosmic Background Explorer, NASA): John Mather, George Smoot. Erstes genaues Spektrum, erste Hinweise auf winzige (10^{-5}) Inhomogenitäten
- > späte 1980er: mehr als 50 Ballon- und bodengebundene Experimente

2001-2012 WMAP (Wilkinson Microwave Anisotropy Probe, NASA): Spektrum der Inhomogenitäten

2009-heute Planck (ESA): Spektrum der Inhomogenitäten inklusive Polarisationsmessungen

Planck-Kurve: COBE-FIRAS (Mather et al.)

Daten aus Fixsen et al. 1996 via http://lambda.gsfc.nasa.gov

Markus Pössel & Björn Malte Schäfer

Planck-Kurve: COBE-FIRAS (Mather et al.)

Daten aus Fixsen et al. 1996 via http://lambda.gsfc.nasa.gov

Markus Pössel & Björn Malte Schäfer

Planck-Kurve: COBE-FIRAS (Mather et al.)

Daten aus Fixsen et al. 1996 via http://lambda.gsfc.nasa.gov

Markus Pössel & Björn Malte Schäfer

Inhomogenitäten/Anisotropien

Bild: ESA/Planck Collaboration

Inhomogenitäten/Anisotropien: Temperatur der Wärmestrahlung fluktuiert um $\sim 10^{-5}~{\it K}.$

 \Rightarrow Grundlage der Strukturbildung (auf die ich hier nicht näher eingehe)

Markus Pössel & Björn Malte Schäfer

Verhältnis Materieteilchenzahl vs. Lichtteilchenzahl?

Aus der Thermodynamik hochrelativistischer Teilchen: Teilchenzahldichte für Photonen (g = 2) ist

$$n_{\gamma} = \frac{8\pi}{(ch)^3} \zeta(3) \, 2(kT)^3 = 2 \cdot 10^7 \left(\frac{T}{1 \ K}\right)^3 \ \frac{1}{m^3}$$

also für T = 3 K:

$$n_{\gamma} = 5 \cdot 10^8 \ m^{-3} = 500 \ cm^{-3}$$

Massendichte (normal und dunkel) im Universum: $3 \cdot 10^{-27} \ kg \ m^{-3}$, das meiste davon Dunkle Materie. Annahme, 15% - 100% davon läge in Form von Protonen (Wasserstoffkernen) vor $(m_p = 1.7 \cdot 10^{-27} \ kg)$: Baryonen-Zahldichte

$$n_b = (0, 3 \dots 1, 8) m^{-3}.$$

Markus Pössel & Björn Malte Schäfer

Verhältnis Materieteilchenzahl vs. Lichtteilchenzahl?

Aus diesen Werten:

$$\eta \equiv \frac{n_b}{n_\gamma} = (0, 6 \dots 3, 6) \cdot 10^{-9}$$

Photonenzahl >> Baryonenzahl!

- n_γ und n_b skalieren in gleicher Weise mit a(t); ihr Verhältnis η bleibt konstant
- winziger η-Wert zeigt: alles findet in einem Photonen-Bad statt, das durch Reaktionen mit den Baryonen kaum beeinflusst wird

Wieviele Reaktionen pro Sekunde pro Atom?

Durchschnittliche Zahl Photonenzusammenstöße pro Atom pro Sekunde für unterschiedliche Teilchensorten:

Atome: Radius $r \sim 10^{-10}$ m, Querschnittsfläche $\sigma_{atom} \sim 3 \cdot 10^{-20}$ m² \Rightarrow Reaktionsrate ist

$$\Gamma_{atom}(t) = n_{\gamma}(t) \cdot c \cdot \sigma_{atom} = 0,004 \cdot \left(\frac{a(t_0)}{a(t)}\right)^3 s^{-1} = 0,004 \cdot (1+z)^3 s^{-1}$$

bzw. durchschnittliche Zeit zwischen Stößen

$$au_{atom}(t) = rac{1}{\Gamma_{atom}(t)} = 222 \cdot \left(rac{a(t)}{a(t_0)}
ight)^3 \ s = 222 \cdot (1+z)^{-3} \ s$$

 \Rightarrow immer genügend Stöße; entscheidend ist die Energie (z.B.: ausreichend, um Atome zu ionisieren?)

Markus Pössel & Björn Malte Schäfer

Wieviele Reaktionen pro Sekunde pro Atomkern?

Durchschnittliche Zahl Photonenzusammenstöße pro Kern pro Sekunde für unterschiedliche Teilchensorten:

Atome: Radius $r \sim 10^{-15}$ m, Querschnittsfläche $\sigma_{Kern} \sim 3 \cdot 10^{-30}$ m² \Rightarrow Reaktionsrate ist

$$\Gamma_{Kern}(t) = n_{\gamma}(t) \cdot c \cdot \sigma_{Kern} = 4 \cdot 10^{-13} \cdot \left(\frac{a(t_0)}{a(t)}\right)^3 s^{-1} = 4 \cdot 10^{-13} \cdot (1+z)^3 s^{-1}$$

bzw. durchschnittliche Zeit zwischen Stößen

$$au_{{\it Kern}}(t) = rac{1}{\Gamma_{{\it Kern}}(t)} = 80.000 \cdot \left(rac{a(t)}{a(t_0)}
ight)^3 \, a = 80.000 \cdot (1+z)^{-3} \, a$$

 \Rightarrow auf astronomischen Zeitskalen genügend Stöße

Markus Pössel & Björn Malte Schäfer

Ab welcher Energie gibt es interessante Reaktionen?

Ionisierung von Atomen: 13,6 *eV* Wasserstoff bis 120 *keV* Plutonium (Ordnungszahl 94).

Kerne spalten durch Photonen (Photodissoziation): Stabilster Kern ⁵6Ni hat Bindungsenergie von 8,8 *MeV* pro Nukleon

[Einheit eV = Elektronenvolt, 1 eV = 1,6 \cdot 10⁻¹⁹ J]

Sobald es genügend Photonen mit hinreichend hoher Energie gibt \Rightarrow keine Atome bzw. Kerne \neq *H* mehr wg. Hintergrundstrahlung!

Welche Energien stehen zur Verfügung?

Planck-Verteilung für die Photonen:

Planck-Kurve: alternative Schreibweise

Planck-Kurve ausgedrückt in dimensionsloser Photonenenergie ξ , mit $E = \xi kT = h\nu$: Energiedichte

$$e(T) = rac{8\pi}{(hc)^3} (kT)^3 \int\limits_0^\infty (\xi kT) rac{\xi^2}{\exp(\xi) - 1} d\xi$$

entspricht Teilchenzahldichte

$$n(T) = rac{8\pi}{(hc)^3} (kT)^3 \int\limits_0^\infty rac{\xi^2}{\exp(\xi) - 1} \,\mathrm{d}\xi$$

also

$$\frac{n(\xi,T)}{n(T)} = \frac{1}{2\zeta(3)} \frac{\xi^2}{\exp(\xi) - 1}.$$

Markus Pössel & Björn Malte Schäfer

Photonen mit Energien kT, $2k\overline{T}$, $3k\overline{T}$ etc.

Photonen mit Energie größer als kT, 2kT etc.

Ein $\eta = 6 \cdot 10^{-10}$ -tel der Photonen hat Energie $\geq 27kT \sim 10 \langle E_{\gamma} \rangle$

Markus Pössel & Björn Malte Schäfer

Entwicklung Photonenenergie mit Skalenfaktor

2,7 kT ist durchschnittliche Photonenenergie, 27 kT die Mindestenergie des hochenergetischsten Bruchteils η – Ausgangspunkt heutiger Wert: kT = 0,2 meV

Markus Pössel & Björn Malte Schäfer

Entwicklung Photonenenergie mit Skalenfaktor

2,7 kT ist durchschnittliche Photonenenergie, 27 kT die Mindestenergie des hochenergetischsten Bruchteils η – Ausgangspunkt heutiger Wert: kT = 0,2 meV

Markus Pössel & Björn Malte Schäfer

Das Universum zurückspulen

Grundlage Beschreibung frühes Universum:

- 1 Zurückverfolgen bis zu z.B. $1 + z = 10^{11}$
- Bei solchem Skalenfaktorwert muss das Universum einfach gewesen sein (komplexere Gebilde: aufgebrochen!)
- Teilchengehalt, Wechselwirkungen durch thermodynamische Überlegungen gegeben (Gleichgewicht)
- ④ Entwicklung vorwärts in der Zeit verfolgen: Wie ändert sich die Situation bei Abkühlung? Wann können welche gebundene Gebilde entstehen?

Frühes Universum

(Kosmische Geschichte)

Die kosmische Geschichte

Urknall und Inflation

- Singulärer Anfang ("alles an einem Punkt"): siehe nächste Vorlesung
- Inflation: Exponentielle Expansion
- Vielfalt von Inflationsmodellen
- Inflation erklärt, warum der Raum flach ist
- Inflation erklärt beobachtete Homogenität
- Inflation erklärt die winzigen Dichtefluktuationen am Anfang

Bild: Friedrich Böhringer

Frühes Universum

(Kosmische Geschichte)

Heiße Elementarteilchensuppe

- Materie vs. Antimaterie
- Versuche mit Ionenkollisionen
- u.a. ALICE-Experiment am LHC

Bild: ALICE Collaboration/CERN

Bild: Arpad Horvath

Markus Pössel & Björn Malte Schäfer

Primordiale Nukleosynthese

Zwei-Teilchenreaktionen, in denen die ersten zusammengesetzten Kerne entstehen:

... aber ab welcher Temperatur ist das möglich?

Nukleosynthese

Nukleosynthese kann erst anfangen, wenn

27 kT = 2,2 MeV = Bindungsenergie Deuterium

 \Rightarrow entspricht im Vergleich zum heutigen kT = 0.2 meV der Skalierung

$$1+z=\frac{a(t_0)}{a(t)}\sim 4\cdot 10^9$$

In realistischen Modellen entspricht das t = 290 s.

Grundzüge Nukleosynthese-Rechnung

$$\sigma_{\rm w} = 10^{-47} m^2 \left(\frac{kT}{1 \text{ MeV}}\right)^2$$
? $\Rightarrow t \approx 1s, kT \approx 0.8 \text{ MeV}$

2 Boltzmannformel für Gleichgewicht sagt

$$\frac{n_n}{n_p} = \left(\frac{m_n}{m_p}\right)^{3/2} \exp\left(-\frac{(m_n - m_p)c^2}{kT}\right) \approx \frac{1}{5}.$$

- 3 Ab t = 290s (Deuterium bleibt erhalten, s.o.) schnelle Kernreaktionen, bei denen alle Neutronen in ⁴He umgesetzt werden
- 4 Bis dahin Zerfall $n \rightarrow p + e^- + \bar{\nu}_e$ mit Halbwertzeit 611 s:

$$(1/2)^{290 \ s/611 \ s} \approx 0.72$$
 neutrons per proton $\approx \frac{1}{7}$.

5 Damit 2 $n + 14 p = {}^{4}\text{He} + 12p$, mass ratio Y = 25%

Markus Pössel & Björn Malte Schäfer

Reaktionsnetzwerk

Schlüsselumstand: kein stabiler Kern bei A = 5! (Fig. from Coc 2012)

Markus Pössel & Björn Malte Schäfer

Nukleosynthese: Vergleich mit Beobachtungen

Abbildung links aus Coc 2016

Alles gut bis auf Lithium-7 – niemand weiß derzeit, warum

Lösung Lithium-6-Problem: Lind et al. 2013

Frühes Universum

Kosmische Geschichte

Kosmische Hintergrundstrahlung

Ab welchem z kosmische Hintergrundstrahlung?

Ionisierungsreaktion:

$$H + \gamma \leftrightarrow = p + e^-$$

Grobe Abschätzung: Bei welchem 1 + z ist 27 kT = 13,6 eV? Antwort:

$$1+z_{rec}=\frac{a(t_0)}{a(t_{rec})}\sim 2000$$

Näherungsrechnung mit Boltzmann-Exponentialgleichung unter Benutzung von $\mu_H + \mu_{\gamma} = \mu_p + \mu_{e^-}$ und $\mu_{\gamma} = 0$ gibt $z \sim 1280$.

Genaueste derzeitige Rechnungen mit Teilchenreaktionsraten aus Wirkungsquerschnitten ergibt $z \sim 1100$.

Markus Pössel & Björn Malte Schäfer

Freisetzung kosmische Hintergrundstrahlung

Gedankenexperiment: Im Raum verteilte Lampen; instantaner "Lichtblitz"

⇒ wir empfangen jetzt, in diesem Moment die Hintergrundstrahlung von einer Kugel geeigneter Größe um uns herum!

Bislang Rekombination nur durch z_{rec} ausgedrückt – umrechnen in Zeit ergibt ca. $t = 400\ 000$ Jahre.

Frühes Universum

Kosmische Geschichte

Stern- und Galaxienentwicklung

An dieser Stelle gezeigt: Film Illustris Collaboration, http://www.illustris-project.org

Markus Pössel & Björn Malte Schäfer

Überblick kosmologischer Modellbau

Homogene Modelle	Э
Allg. Relativität	
Harrier Haumzeiten H ₀ Kinematik	
$\Omega_m, \Omega_\Lambda, \Omega_b, \Omega_r$ Dynamik	
Früher, heißer Kosmos	
Teilchen-, Kern-, Atomph.	
η Baryon-Photon ratio	

Inflaton-Eigenschaften

Inhomogenitäten

Newton'sche Störungen Newton'sche Simulationen Raytracing Powerspektrum Skalar vs. Tensor Reionisationszeit

Frühes Universum

(Kosmische Geschichte)

Die kosmische Geschichte

Frühes Universum

(Kosmische Geschichte)

Grenzen unseres Wissens

Was ist Dunkle Materie?

Was ist Dunkle Energie?

Was geschah in den frühesten Momenten der Urknallphase?

Erwartbare Grenzverschiebungen

- Immer genauere Durchmusterungen (=Bestandsaufnahmen) des Universums (2020+)
- Neuartige Messungen durch n\u00e4chste Generation von Teleskopen (2020+)
- Genauere Abstandsmessungen verringern die Messunsicherheiten (2019+)
- Immer genauere Messungen der kosmischen Hintergrundstrahlung (2014+)
- Fortschritte in der Teilchenphysik: Schwerionenbeschleuniger, Large Hadron Collider... (2015+)
- Fortschritte bei den physikalischen Theorien (?)