Gravitationswellen

Vom Schwarzen Loch bis zum Urknall: Einsteins Astrophysik für Nicht-Physiker

Markus Pössel & Björn Malte Schäfer

Astronomisches Recheninstitut/Haus der Astronomie

1 Einführung Gravitationswellen

- 2 Erzeugung von Gravitationswellen
- 3 Wie man Gravitationswellen direkt nachweist
- 4 Interferometrische Detektoren
- **5** Wo stehen wir? Wie geht es weiter?

Analogie Elektromagnetismus

Elektromagnetische Wellen: Transversal, Fortpflanzung mit Lichtgeschwindigkeit – gegenseitige Anregung elektrisches und magnetisches Feld

Einfachste Metrik

Einfachste Metrik ("transverse-traceless gauge"):

Frei fallende Testmassen/Uhren definieren Raumkoordinaten und Zeitkoordinate. Metrik:

$$ds^{2} = -c^{2}dt^{2} + [1 + h(t - z/c)] dx^{2} + [1 - h(t - z/c)] dy^{2} + dz^{2}$$

für Gravitationswellen, die in z-Richtung propagieren.

Finfachster Fall

$$h(t) = A \sin(\omega t),$$

sinusförmige Schwingung mit sehr kleiner Amplitude, $A < 10^{-21}$.

Einfache Wirkung auf Teilchen

Teilchenring mit Gravitationswelle, die senkrecht zum Bild durchläuft:

Abstände von frei laufenden Teilchen (inklusive Lichtpulse, Licht-Wellenberge)

Markus Pössel & Björn Malte Schäfer

Was passiert mit Teilchen, die nicht frei sind?

Beschränke auf x-Richtung. Setze (analog zur Kosmologie!)

$$\mathrm{d}s^2 = -c^2\mathrm{d}t^2 + a(t)^2 \,\mathrm{d}x^2$$

mit

$$a(t) = \sqrt{1 + h(t)}.$$

Führe Newton-artige Koordinate ein, die tatsächlich die Entfernung angeben:

$$x_s(t) = a(t) x.$$

Geschwindigkeit für x = const.:

$$\dot{x}_s(t) = \dot{a}(t)x = \frac{\dot{a}(t)}{a(t)}x_s(t),$$

Beschleunigung für x = const.:

$$\dot{x}_s(t) = \ddot{a}(t)x = \frac{\ddot{a}(t)}{a(t)}x_s(t).$$

Markus Pössel & Björn Malte Schäfer

Wähle x_s (entspricht gemessenen Längen) als Inertialkoordinaten. Metrische Störungen zeigen sich als Trägheitskräfte:

$$m \ddot{x}_s = F_x + m \frac{\ddot{a}}{a} x_s.$$

Direkt ablesbar Eigenschaften von Trägheitskräften:

• $\sim x_s$

• ~ *m* zeigt: Eigentlich eine Beschleunigung!

Beschleunigungen ~ $A\omega^2 x_s$, also bei 1 kHz: $10^{-14} x_s$

Erzeugung

Dominanterterm elektromagnetische Wellen: Elektrisches Dipolmoment ist

$$\vec{p}_e = \sum_i q_i \vec{x}_i,$$

abgestrahlte Leistung ist $P \sim (\ddot{p}_e)^2$.

Massen-Dipolmoment einer Massenverteilung ist

$$\vec{p}_g = \sum_i m_i \vec{x}_i = M \vec{X},$$

proportional zum Schwerpunkt! Wenn man über alle beteiligten Massen aufsummiert, $\ddot{p}_g = 0$ wegen Impulserhaltung.

Für Gravitationswellen offenbar eine andere Formel nötig!

Markus Pössel & Björn Malte Schäfer

Erzeugung: Quadrupolformel

Quadrupolformel (erstmals Einstein 1916, aber lange Diskussion, ob Gravitationswellen real/Formel gültig, siehe Kennefick 2007, *Travelling at the speed of thought*):

$$P_{gw} \sim \frac{G}{c^5} \left(\frac{MR^2}{T^3}\right)^2$$

wobei R charakteristische Ausdehnung des Systems, M Gesamtmasse, T Zeitskala der Bewegung

(eigentlich in der Klammer: dritte Zeitableitung des Quadrupol-Moments der Massenverteilung; vereinfachte Rechungen hier nach Kokkotas-Skript)

Erzeugung: Quadrupolformel

Zeitskala Kreisbewegung: $T^2 = 4\pi^2/GM R^3$ (3. Kepler'sches Gesetz mit Newton'schen Zusatzinformationen), damit

$$P_{gw} \sim \frac{G}{c^5} \left(\frac{MR^2}{T^3}\right)^2 \sim \frac{G^4}{c^5} \left(\frac{M}{R}\right)^5$$

Das als "natürliche Leistung" mal Systemeigenschaften schreiben: $[G] = m^3/kg s^2$ und [c] = m/s:

$$\left[\frac{c^{5}}{G}\right] = \frac{m^{5}}{s^{5}} \frac{kg \, s^{2}}{m^{3}} = \frac{m^{2}}{s^{3}} kg = W$$

Natürliche Leistung ist

$$\frac{c^5}{G} \sim 10^{52} W \sim 10^{26} L_{\odot}.$$

Erzeugung: Quadrupolformel

Quadrupolformel mit dieser natürlichen Leistung umschreiben:

$$P_{gw} \sim \frac{G^4}{c^5} \left(\frac{M}{R}\right)^5 \sim \frac{c^5}{G} \left(\frac{\mathcal{R}}{R}\right)^5$$

mit $\mathcal{R} = 2GM/c^2$ der charakteristischen Gravitations-Längenskala (Schwarzschild-Radius).

Zwei Erdkugeln, die sich beim Umlaufen fast berühren: $P_{gw} = c^5/G (1 \text{ cm}/10\ 000 \text{ km})^5 \sim 10 \text{ MW}$

Zwei Neutronensterne, die sich beim Umlaufen fast berühren: $P_{gw} = c^5/G (1 \text{ km}/10 \text{ km})^5 \sim 10^{47} \text{ W} = 10^{21} L_{\odot}.$

Gravitationswellen und der Binärpulsar

Indirekter Nachweis ab 1974 durch Hulse und Taylor \Rightarrow Umlaufzeit nimmt genau so ab, wie man aufgrund der Quadrupolformel erwarten würde

Physik-Nobelpreis 1993!

Bild: Weisberg et al. 2010

4

Amplitude von Gravitationswellen

Aus verwandten Formeln:

$$A \sim \frac{G}{c^4} \frac{1}{d} \frac{MR^2}{T^2} \sim \frac{\mathcal{R}^2}{Rd}$$

im Abstand d von Gravitationswelle mit typischen Größen R, M, T; bei der zweiten Umformung wieder Keplergesetz eingesetzt.

D.h. für Neutronensterne, die sich beim Umlaufen fast berühren:

$$A \sim 10^{-21} \left(\frac{1 \mathrm{MLj}}{d}\right).$$

Markus Pössel & Björn Malte Schäfer

Wie man Gravitationswellen nachweist

Jetzt wo wir wissen, was sich verändert — mit Licht und mit Materie — können wir die Veränderungen beim Durchgang von Gravitationswellen nachweisen:

- Resonanzdetektoren
- Pulsar-Felder
- Interferometrische Detektoren

Resonanzdetektoren

$$m \ddot{x}_s = F_x + m \frac{\ddot{a}}{a} x_s.$$

Wirkung entlang der x-Achse (anderes a(t) entlang der y-Achse!):

$$a_x(t) = \sqrt{1 - h(t)} \approx 1 - \frac{1}{2}h(t) = 1 - \frac{A}{2}\sin(\omega t),$$

so dass

$$\frac{\ddot{a}_x(t)}{a_x(t)} \approx \frac{A\omega^2}{2}\sin(\omega t)$$

Lösung: Konstruiere System, für das

$$\ddot{x}_s + 2\gamma \dot{x}_s + \omega_0^2 x_s = \frac{A\omega^2}{2}\sin(\omega t) x_s$$

- extern getriebener Oszillator, Resonanz rund um

$$\omega \sim \sqrt{\omega_0^2 - 2\gamma^2}.$$

Markus Pössel & Björn Malte Schäfer

Resonanzdetektoren

Amplitude / A.

Weber-Bar (Joseph Weber, 1960er Jahre)

Pulsar-Timing

Pulsare sind extrem reguläre Uhren — direkte Messungen der Variationen der Ankunftsszeit ~ Δt_e

Funktioniert nur für sehr niederfrequente Wellen $10^{-10} - 10^{-6}$ Hz

e.g. Hobbs 2013

Markus Pössel & Björn Malte Schäfer

Interferometrische Gravitationswellendetektoren

"Benutze Laserlicht, um Längenänderungen in den beiden Armen nachzuweisen"

Markus Pössel & Björn Malte Schäfer

Markus Pössel & Björn Malte Schäfer

Günstigster Fall: Starke Verschiebungen gegeneinander! Hier die Ankunftszeiten der Pulse:

Markus Pössel & Björn Malte Schäfer

Ungünstigster Fall: Effekte heben sich beim Durchlaufen des Interferometers gerade auf! Pulszeiten:

Störquellen für interferometrische Detektoren

Die wichtigsten Störquellen:

- Seismik
- Thermische Störungen
- Quanteneffekte

Störquellen: Seismik

Erdbewegungen, insbes. Oberflächenwellen auf der Erde: Einige Zentimeter Amplitude, Spektrum ~ f^{-2} . Außerdem: Gravitationskraft solcher Störungen!

Gegenmaßnahmen: Aktive Dämpfung, passive Dämpfung, unterirdische Detektoren, Weltraumdetektoren

Frequenz-Untergrenze durch diese Störungen: $\sim 1-10 \mbox{ Hz}$

Bild: Abb. 6 in Pitkin et al. 2011 Gravitationswellen

Markus Pössel & Björn Malte Schäfer

Störquellen: Thermische Störungen

Bei Temperatur ungleich Null: Zufällige Fluktuationen in allen Freiheitsgraden.

Lösung: Möglichst reine, resonante Systeme — dann ist die Wirkung der Fluktuationen auf spezifische Frequenzen begrenzt! 40 kg Saphir oder Quarzglas (= reines SiO₂)

Wichtiger Effekt: Fluktuationen der Dicke der reflektierenden Beschichtung!

Markus Pössel & Björn Malte Schäfer

Bild: Caltech/MIT/LIGO Lab

Störquellen: Quanteneffekte

Schrotrauschen und Zufallseffekte am Strahlteiler

Wichtigste Lösung: Hohe Laserleistung! Leistung geht wie Photonenzahl N, Fluktuationen gehen wie \sqrt{N} , relative Fluktuation geht wie $\sqrt{N}/N = 1/\sqrt{N}$

Wie bekommt man hohe Leistung?

- Starke Laser (stabilisiert, mehrstufig, LIGO: 2 W \rightarrow 35 W \rightarrow 220 W)
- Fabry-Perot-Interferometer (fast undurchlässige Zusatzspiegel)
- Interferometer (fast) bei komplett destruktiver Interferenz fahren
- Power Recycling (Spiegel am Laserende)
- Signal Recycling (Spiegel am Detektorende)

Advanced LIGO-Detektor-Layout

Abb. 1 in LIGO Scientific Collaboration 2014

Markus Pössel & Björn Malte Schäfer

Störquellen

Abb. 2 in LIGO Scientific Collaboration 2014

Markus Pössel & Björn Malte Schäfer

Störquellen

Schönes Computerspiel (auf Englisch) zu den Einflüssen, Einschränkungen, Entscheidungen: Space Time Quest

Wo stehen wir?

Wo stehen wir? Wie geht es weiter?

Bild: Giles Hammond

Markus Pössel & Björn Malte Schäfer

Wo stehen wir?

Nachweiswahrscheinlichkeiten?

NS-NS-Verschmelzungen: Derzeit am besten abschätzbar (Erzeugung verstanden, Wellenform bekannt, Häufigkeitsabschätzungen über Pulsare, Wissen zur Sternentstehung), Distanz *d*: Grenzdistanz für Nachweis Verschmelzung zwei 1,4 M_{\odot} mit S/N 8.

Jahr	Dauer	aLIGO d [MLj]	Virgo: d [MLj]	# Nachweise
2015	3 Mo.	130 - 260	65 - 200	0.0004 - 3
2016-17	6 Mo.	260 - 400	70 - 200	0.006 - 20
2017-18	9 Mo.	400 - 550	200 - 280	0.04 - 100
2019+	kont. 3	650	210 - 420	0.2 – 200 / Jahr
2022+	kont. 4	650	420	0.4 – 400 / Jahr

(LIGO Scientific Collaboration 2013)

Nachweiswahrscheinlichkeiten?

Umgerechnet auf *minimale* Wahrscheinlichkeiten: Erster Nachweis bis Ende...

Jahr	Minimalwahrscheinlichkeit		
2015	0.04 %		
2017	0.10 %		
2018	4.10 %		
2019	23.28 %		
2020	38.62 %		
2021	50.90 %		
2022	70.54 %		
2023	82.32 %		
2024	89.39 %		

Wo stehen wir?

Heute morgen um 5:04 Uhr

Bild: ESA

Markus Pössel & Björn Malte Schäfer

Interferometrische Detektoren

Wo stehen wir?

LISA Pathfinder (LPF)

Bild: ESA-P. Sebirot, 2015

Bild: ESA/ATG medialab

Markus Pössel & Björn Malte Schäfer

eLISA - ESA-Version der Laser Interferometer Space Antenna. Start 2034?

Bild: AEI / Milde Marketing / Exozet

Bild: AEI / Milde Marketing / Exozet

Markus Pössel & Björn Malte Schäfer

Detektionsbereiche

Graphik: Christopher Moore, Robert Cole und Christopher Berry via Wikimedia Commons unter Lizenz CC-BY-SA 1.0

Zusammenfassung

- Analogie zu elektromagnetischen Wellen, aber: Quadrupol
- Erzeugung: Leistung ~ $(\mathcal{R}/R)^5$
- Direkter Nachweis jetzt (+ 2-3 Jahre?)
- Ziel: Gravitationswellenastronomie