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@ Thermodynamics & statistics in an FLRW universe
@ Going back in time to small a
© Primordial nucleosynthesis

O The cosmic background radiation
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Thermodynamics & statistics in an FLRW universe

e Up to now, matter in our universe has not interacted

e [f we get back to sufficiently small a(r) (as we must — singularity
theorems!), we cannot have had separate galaxies

e Early universe: filled with plasma, colliding particles (atoms and
photons, nucleons and nucleons) = we need a description from
thermodynamics and statistical physics!
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When thermodynamics is simple and when it isn’t

Thermodynamics is simple when a system is in thermal
equilibrium, and complicated when it isn't.

(If not in equilibrium: fluid dynamics plus reaction kinetics — can be
horribly complicated!)

In equilibrium, certain thermodynamical quantities can be
introduced, which take on constant values throughout the system.
Best-known of those: Temperature T and pressure p.

Equilibrium thermodynamics: given energy E, volume V, particle
number N, calculate T, p.
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Statistical basis for thermodynamics

Thermodynamics: Macrostates specified by thermodynamic
variables like E,V,T,p, N.

Statistical mechanics: Microstates of particles (e.g. N particles
making up a gas — each has a given momentum at a given time)

Entropy as a quantity to count microstates compatible with a
macrostate:

S =k-logQE,V,N).
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Systems in equilibrium

Entropy difference in terms of changing variables:

ds= ~.de+ 2 .av
T T

(this can be taken as definitions of T and p).
Re-write as first law of thermodynamics:

dE=T-dS—p-dV
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Systems that are not in equilibrium

Second law of thermodynamics: 6S > 0, but never §S < 0. Entropy
cannot decrease.

Two systems in contact so that S = S; + S5, V = V| + V5,
E=FE| + Ey:

dE, = —dE,; dV; = —dV; so that

T T, Tn T,

Second law means: at constant volume, dE; < 0 if T} > T». At
constant temperature, dV; > 0 if p; > p,. In thermodynamics
equilibrium, dS = 0, so T} = T, p1 = p». All as expected.

11
dS:(———)-dE1+(’ﬂ—’2)-dV1zo.
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Entropy density

Define the entropy density s(T) by S(T,V) =V - s(T)
(This works because entropy is extensive!).

Then for any adiabatic change,

d(pc?V) + pdV
T

d(s(T)V) Vds(T) + s(T)dV =dS(T,V) =

Ve 2 2
id—pdT+ (oc” + p)dvV
T dr T
This can only hold generally if the coefficients for dV are equal:

2
pc+p
T)=—

s(T) T

(coefficients for dT give energy conservation).
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Chemical potential

Additional contribution to entropy:
1 i
ds=—-dE+ 2 .av -y Haw,
T T - T

(this can be taken as the definition of the ;). New first law:

dE:T~dS—p'dV+Z'L¥dN,-
i
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Chemical potential

Within the same system, in thermal equilibrium, reactions
changing particle species 1 into 2 (and other way around), with
Ni + N> = N =const.:

1
ds = ?(,Uz — p1)dN7.

If up > uy, number of 1-particles increases! In full thermodynamic
equilibrium, from dS = 0, u; = .
Distinguish between

e thermal equilibrium (7, p constant, u; can differ from equilibrium
values)

e chemical equilibrium (y; have equilibrium values, T, p could differ)

e thermodynamic equilibrium (7, p, u; all have equilibrium values)
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Multi-particle reactions:

Particle reaction
142 3+4

(z.B. H+vy < p + e, or nuclear reaction):

dN; = dN, = —=dN3 = —dNg4, then in thermal (not necessarily
chemical!) equilibrium:

1
ds = T(ﬂs +p4 — 1 — p2)dNy > 0.

In equilibrium,

M3+ U4 =yt o
(more generally: one such relation for each conserved quantum
number: baryon number, lepton number, . ..)

The hot, early universe
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Particles in thermal equilibrium

Grand-canonical example: E, V, N given — what is the equilibrium
state? (Sum over quantum states, treat bosons and fermions
differently).

Number density in momentum space cell d*p = dp, - dp, - dp.:

8 &p
exp (E(p) — pul/KT) 7 1 13

n(pmpy’pz) =

with E(p) = ymc? + (pc)?.

Integrate up to get total particle number density!
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Highly relativistic particles 1/2

kT > mc?, kT > u, E ~ pc:

Equipped with these formulae, it is straightforward to show that

1 bosons
3
n= (c h)3 ¢(3) g(kT) { 3/4 fermions
wlth £(3) = 1.2020569031. The density for highly relativistic
particles is
5
2 _4m 4 bosons
pe 15(¢ h)3 8(kT) { 7/8 fermions

For bosons, this is Bose-Einstein statistics, for fermions,
Fermi-Dirac statistics.
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Highly relativistic particles 2/2

Pressure: |
p = gpcz (as for radiation!)
Entropy density:
4 pc? _ 167° 3 1 bosons
SO =37 = 25np D71 78 fermions

Note that the chemical potential v features nowhere in here — for
highly relativistic particles, lots of particle-antiparticle pairs flying
around, the chemical potential can be neglected!
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Thermal photon gas: g = 2 (two polarizations), bosons, m = 0,
E = hv, in thermal equilibrium u = 0:

Number density of photons with frequencies between v and v + dv
is
8mv?/c?
——dv
exp(hv/kT) — 1
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(o8]

v

2 8h f 3 q
= — —_ dv
PE =73 ) expthvkT) -1

0

From the bosonic energy distribution, it follows that the number
n(m) of photons with energies greater or equal to m - kT is

(m) = n r x2dx
T xG) / exp() — 1’

For instance, 10~ of the photons have energies > 26kT, while
1071° have energies > 29T
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Non-relativistic particles

For non-relativistic particles, mc? > kT and

»?
E(p) ~ mc* + =—.
2m
The number density is
2 _
"= }%(27rka)3/2 exp (—kaT “)

even when not in chemical equilibrium, the energy density is
2 2,3
pc” =n-|mc” + EkT
and the pressure

p =nkT.

These last expressions are as expected.
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Particle interactions and time scales

How many particle interactions (collisions) in a given situation? For
non-relativistic particles in thermal (not necessarily chemical!)
equilibrium, number densities n; and n,, reduced mass

u = mymy/(my + my), the collision rate density C is

C = nmny (uo(E))u,

where the averaging is over a Maxwell-Boltzmann distribution for
the relative velocity u, and o (E) is the cross section (= collision
probability), with E(u) the (velocity-dependent!) energy,

- 3/2 P
(uo(E)), = 4n 2 kT f ( ZkT)a'(E)u du.
0
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Particle interactions and time scales

If o(E) is independent, or weakly dependent on E, the integral

becomes
8kT
oy, = ouy,. = o|—
\/ Tl

If one of the particle species is photons, we will approximate the
collision rate by
C =nimoc,

scaling, if necessary, with the fraction of photons with an energy
larger than the reaction we'’re interested in.

The hot, early universe
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Particle interactions and time scales

The number of reactions per particle of species 1 is
C
['=— =n (uo(E))u,
ni

which has physical dimension 1/time.

We compare this with the Hubble parameter

H(@ =2
a
which is the ratio of the change of a to a itself, and thus a measure

for the time it takes a to change significantly.
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Local equlibrium vs. freeze-out

© T > H for reactions that establish thermal equilibrium: Local
Thermal Equilibrium (LTE): Adiabatic (=isentropic) change from one
temperature-dependent equilibrium to the next

® H > I': Freeze-out — particle concentrations remain constant (or
change because of decay, or alternative reactions). Temperature
decouples.

The hot, early universe
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For small x = a/ay: Radiation dominates!
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Radiation dominates

For early times, assume that the only significant contribution
comes from radiation:

a=ag \2VQ0Hy t

so with Q,0 =5- 107 and Hy = 2.18 - 10718/s,

t
a=ap-(1.76-1071%) [ —.
ls

Hubble parameter goes as

1
H(t) = 2_t

The hot, early universe
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For the phase directly following radiation dominance

For later times assume the only significant contribution comes from
the matter density,

3 2/3
a=ap (5 \/Qmo Hy l‘) s

so with Q,,0 = 0.317 and Hy = 2.18 - 10~18/s,

£ \2/3
a:ao-(1.5-10_12)(1—s) .

Hubble parameter goes as

2
H(t) = 5

The hot, early universe
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How does this compare to the exact treatment?

107

102

10*

Relative scale factor x

10°

— Full evolution |}
— Radiation only
— Matter only

10° 10%° 10" 10%? 10" 10 10" 10
Cosmic time [s]

...works except for r = 8 - 10'° = 2. 10! s = 6k — 300k years.
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How does the energy distribution evolve?

At some time ¢, scale factor value a(t;), in some volume V, let the
photon number between v; and v; + dv; be

81(v1)?/c3
Yexp(v kT — 1
At some later time t,, the same photons are now spread out over a
volume V, = (x21)° with xo; = a(t)/a(t)). They have been
redshifted to v, = v;/x21, and their new frequency interval is
dV2 = dV1 /le.

The hot, early universe
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How does the energy distribution evolve?

We can re-write the new number density in terms of the new
frequency and interval values v, and dv;; the x,; mostly cancel,
which gives a new number density in the frequency interval
vo...vp +dvy at time 1, that is

8r(v2)?/c?
dVQ.
CXp(hVQXQl/le) -1

This corresponds to the number of photons we would expect in the
given frequency range for thermal radiation with temperature

T, =T -a(t1)/a(tr),

which for a(#;) > a(t;) corresponds to lower temperature.
Temperature scales as ~ 1/a(t)! Radiation remains Planckian!

The hot, early universe
I

Simon Glover & Markus Pdssel



Thermo & isti Back in time Primordial nucleosynthesis Cosmic background radiation

Photon number > baryon number

Now it becomes important that the number of photons is so much
larger than the baryon number (as you will estimate in the
exercise):

n:n—B ~6-10710,
y
Everything that’s going on will take place in a photon bath! Even
absorption reactions hardly matter — they will change the bath by
at most 107!

The hot, early universe
I

Simon Glover & Markus Pdssel



Thermo & isti Back in time Primordial nucleosynthesis Cosmic background radiation

Photon energy over time

Temperature effects in the early unlverse

— 2.7 KT (average boson enerQY) |
— 27 KT (a billionth of all photons) | |
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Photon energy over time

Temperature effects in the early unlverse

— 2.7 KT (average boson enerQY) |
— 27 KT (a billionth of all photons) | |
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Photon energy over time

Temperature effects in the early universe

10° | 1

Ni-56 binding energy: 8.8 MeV/nuclepn

107 L
N

Electron pair production: 1.2 MeV

[ I
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Reaction numbers?

You will calculate some reaction numbers (photon colliding with
atom, or with nucleus) in the exercises today. Collision rates will
not be a problem — as long as the photons carry sufficient energy
to trigger a reaction (ionization, splitting a nucleus...)!

Simon Glover & Markus Péssel The hot, early universe
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The big picture

Radiation era Matter era

Big bang

1073 s
Inflation

1le-6s
quark confinement

~1sto3min
light elements

Simon Glover & Markus Pdssel

1e8 a Now
galaxies 13.8e9. a
380,000 a
CMB

The hot, early universe
I



Thermo & isti Back in time Primordial nucleosynthesis Cosmic background radiation

Where do we begin?

In this lecture, we trace temperature back until we have a sea of
single nucleons (protons and neutrons). We leave earlier phases
(inflation etc.) for later, namely for the last lecture.

The hot, early universe
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Primordial nucleosynthesis

As we have seen, at about 1s of cosmic time, sufficient photon
energy to tear apart the most stable nuclei (Ni-56).

Three-particle reactions much too uncommon (will occur in stars,
but not here!), so nuclei have to be built from two-particle reactions.

Y
P "\ /
/ \ ‘D ° n
nd 0)\~ —
a— S~
d
P S~ /“g P 3He
/ \
nd Y
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Reaction network

(ot,m) (oY)

Key: There is no stable element with A = 5! (Fig. from Coc 2012)
The hot, early universe
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When can nucleosynthesis start?

All nucleosynthesis starts with deuterium production. Binding
energy of Deuterium: 2.2MeV.

Nothing happens until the photon energy 27T (this or more
carried by 6 - 107'0 of all photons!) goes below 2.2 MeV, which is
(k=8.6-107 ¢V/K) at
Tp=9.5-108 K
or
alag = To/Tp =3 -107°
SO
t =290 s.

...at which time, all neutrons are quickly built into *He; most stable
configuration, gap at A = 5! But how many neutrons do we have in
the first place?

Simon Glover & Markus Péssel The hot, early universe
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How many neutrons do we have to start with?

Weak interactions between protons and neutrons:

n+v, < p+e

Reaction rate for these weak interactions is:

kT )2

— 10—47 2
Tw "\ T Mev

Estimating the reaction rate (similar to exercise), this works only
while there is still pair production, and stops at

t~1s, kT ~ 0.8 MeV.

The hot, early universe
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How many neutrons do we have to start with?

n+ve e p+e

in equilibrium above or about kT = 1 MeV means that
Hn + Wy, = Hp T Hew = fn = Hp

(where, as mentioned above, we have neglected u for highly
relativistic, pair-produced particles. But the non-relativistic number

density was

mcz—ﬂ)

_ 8 3/2
n= ﬁ(Zﬂka) exp (— T

SO

mo_ (ma\"? (=)
B p kT '

The hot, early universe
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How many neutrons do we have to start with?

ny, (mn)3/2 ( (mn—mp)cz)
~ == exp|-———|.

kT

Inserting kT = 0.8 MeV and (m,, — mp)c2 = 1.293 MeV, neglecting

the pre-factor:
ny

=0.198

| —

p
att = ls.
Problem: Neutrons decay, with half-life 611 s! Between ¢t =1 s and

t = 290 s, the number ratio has dropped from 1 neutron to 5
protons to

(1/2)%0s/611's 072 neutrons per proton ~

2| -

The hot, early universe
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Helium fraction

With 2 neutron per 14 protons (1/7), you can make 1 “He plus 12
protons. Mass ratio between He and total mass is
4
Y=—=2
16 3%
... this is the fairly robust main prediction for big bang
nucleosynthesis!

The hot, early universe
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Y

Time evolution

1 L LR A1 T T TTTT 1
p

Mass fraction

10 10 10!

Time () Fig. from Coc 2OT12
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Mass fraction

*He/H, DIH
. B.
[
/
[
/. HHH‘ L LL

LiMH

Image from Coc 20#&not, early universe
D
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The cosmic background radiation

How do we get from the plasma state (hydrogen and helium nuclei,
electrons, photons) to an atomic, transparent universe?

Reaction:
H+yo=p+e

As you will estimate in the exercises (at least the LHS), lots and
lots of collisions — system will be in equilibrium!

In thermodynamic equilibrium, thermodynamic potentials add up:
HEH + [y = Hp + e

... but 1, in chemical equilibrium is zero!

The hot, early universe
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Photon chemical potential

But there are atomic reactions where either one or two photons
can be produced:

A—>B+y versus A—B'+y, BS > A+y.

This means
HA = UB + Uy,
but also
HA = [+ + [y = UB + 2/,

= this can only hold if ., = 0!

Simon Glover & Markus Péssel The hot, early universe
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Equilibrium state for ionization

Since u, = 0, in equilibrium for the reaction H +y &=p +e”,

HH = Mp + Ue-.

Our particles are all non-relativistic, so

2 _
n= %(27rka)3/2 exp (_kaT ﬂ),

and with the g, = g, = 2 (spin £1/2) and gy = 1 + 3 = 4 (spin 0
plus spin 1), so

note  (2mm kT3 (my P ( B)
= — exp
nyg h3 myg

where B = (my, + m, — my)c? = 13.6 eV is the binding energy.

The hot, early universe
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Equilibrium state for ionization

Charge neutrality means n, = n,. Define the ionization fraction

Ne
xe = )
ne + ny
so that
xg Ne Ne (2rm kT)3/? mp 312 ( B )
= = = —_— ex e
1-x, ngne+nyg) ngnp ngh3 my P\"kr

with np, the baryon number density. But the number density is
related to the modern value, and the present (CMB) temperature

Ty, as
3 7\3
nb(t)—nbo( ()) bO(FO) )

Simon Glover & Markus Péssel The hot, early universe
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Equilibrium state for ionization

Inserting this into the equation, neglecting the m,,/my term,

x2 1 (2rmmk 3/2e ( B )
= Xp|——
1—x, o\ T P\"kr
3/2 5
1K 1.6-10° K
= 878-10°'|—| exp|-———
T T

The hot, early universe
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lonization fraction by temperature
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Recombination at what redshift?

From the previous graph, T,.. = 0.3 eV ~ 3500 K.
By scaling behaviour of T

@i _ To _gg8.1074=
ap rec I+z
SO
z ~ 1280.

Using the “matter only” approximation

3 2/3
a=ap (5 V0 Ho t)

we get
tree = 376,000 a.

The hot, early universe
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Precision CMB: COBE-FIRAS (Mather et al.)

Data from Fixsen et al. 1996 |
Best Planck fit: T =2.728 K

Range shown: spectrum +3 ¢

—

ot

(==}
T

Intensity in MJy/sr

10 15 20
Frequency in 1/cm

o
ot

Data from Fixsen et al. 1996 via http://lambda.gsfc.nasa.gov
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Precision CMB: COBE-FIRAS (Mather et al.)

Data from Fixsen et al. 1996 |
Best Planck fit: T =2.728 K

Range shown: spectrum £100 o
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Precision CMB: COBE-FIRAS (Mather et al.)

Data from Fixsen et al. 1996 |
Best Planck fit: T =2.728 K

Range shown: spectrum £500 o
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Data from Fixsen et al. 1996 via http://lambda.gsfc.nasa.gov
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The big picture

Radiation era Matter era
|

|
Big bang |

1073 s
Inflation

1e-6s
quark confinement 1e8 a Now
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Little, Andrew J.: An Introduction to Modern Cosmology. Wiley
2003 [brief and basic]

Dodelson, Scott: Modern Cosmology. Academic Press 2003.
[more advanced]

Weinberg, Steven: Cosmology. Oxford University Press 2008
[advanced]

Weinberg, Steven: Gravitation and Cosmology. Wiley & Sons 1972
[advanced and detailed]
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