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FLRW spacetime basics FLRW dy i FLRW [ Light proy ion / di Meaning of Expansion

@ FLRW expansion: Kinematics and basic properties
@ The dynamics of FLRW universes

@ Examples for FLRW universes

O Light propagation / distances in FLRW spacetimes

@ What does cosmic expansion mean?
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FLRW spacetime basics FLRW dy i FLRW | Light proy ion / di Meaning of Expansion

Cosmic time and FLRW metric

Friedmann-Robertson-Walker-Metric: Substrate of “galaxy dust”
moving with the cosmic flow (scale factor expansion). Distances
between substrate galaxies change proportionally to the cosmic
scale factor a(¢). Time coordinate ¢ (cosmic time) is proper time of
substrate particles. Different kinds of possible geometry
parametrized by K = —1,0, +1 (hyperbolic, flat, spherical):

2

d
ds? = —2dP? + a()? | ——— + 2dQ| = 272
1-Kr?

with dQ = d6? + sin® 6 d¢?.
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Taylor expansion of the scale factor

Generic Taylor expansion:

1
a(t) = alto) + alto)(t = to) + 5~ (& = )+ ...
Re-define the expansion parameters by introducing two functions

_ a0 __a(a()
H(@) = a0 and ¢(t) = a0

and corresponding constants

Hy = H(t) and gqo = q(t)

1
a(t) = ao |1+ (¢ — to)Ho — quHg(t — 1) +...
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Some nomenclature and values 1/2

to is the standard symbol for the present time. If coordinates are
chosen so cosmic time ¢ = 0 denotes the time of the big bang
(phase), then 1y is the age of the universe. Sometimes, the age of
the universe is denoted by 7.

H(¢) is the Hubble parameter (sometimes misleadingly Hubble
constant)

Hy = H(1y) is the Hubble constant. Current values are around

km/s

Mpc /a

Hy =70
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FLRW dynami FLRW examy Light propagation / di Meaning of Expansion
Some nomenclature and values 2/2

Sometimes, the Hubble constant is written as

km/s

Hy=h-100
Mpc

to keep one’s options open with / the dimensionless Hubble
constant.

The inverse of the Hubble constant is the Hubble time (cf. the
linear case and the models later on).
1

km/
h- IOOM—pCS

~h 110" a
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Light in an FRW universe

For light, often easier to use ds®> = 0 instead of the geodetic
equation.

Also: use symmetries! Move origin of your coordinate system
wherever convenient. Look only at radial movement.

ds? = —2d7 + a(t)? [ | erQ]
1 - Kr?
becomes
g = o.ewdr/c
V1 - Kr?
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Light in an FRW universe

Integrate to obtain

f a(t) - f W_Kr

Plus/minus: light moving towards us or away from us.
The key to astronomical observations in an FRW universe:

fto dr frl dr
c — = _—
1 a(r) 0 V1-Kr?

where, by convention, #( is present time, #; < #yp emission time of
particle, r; (constant) coordinate value for distant source.
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Light signals chasing each other 1/2

Imagine two signals leaving a distant galaxy at r = r; at
consecutive times ¢, and ¢, + 8¢y, arriving at #y and 6ty. Then

fc_df_f_
J a0 ") itk

and
to+0tg

| &=
a(t)_o 1 — K2

1 +61

to+0ty 1 +01
f a(r) f a(t)
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FLRW dynami FLRW examy Light propagation / di Meaning of Expansion
Light signals chasing each other 2/2

For small 6¢,
+6t

ff(t) dr = f(7) - ot,

SO in our case
oty _ ot

a(t) — a(h)
Signals could be anything — in particular: consecutive crests (or
troughs) of elementary light waves of frequency f oc 1/6t:

t A f
fo_ @,wavelengths change as A _ alto)

fi  alto) A alh)
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Frequency shift by expansion

Frequency shift z (commonly redshift) defined as

_ Ao -4 alt)
o R G\

A B a(tl)
r a(to)
_ 0
tre= a(ty)

For co-moving galaxies: z is directly related to r;. For monotonous
a(r): distance measure.

Relation depends on dynamics = later!
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Cosmological redshift

Wavelength scaling with scale factor:

W—I
wavelength

Redshift for a(tg) > a(t;); blueshift for a(ty) < a(t;)
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For “nearby” galaxies...

... use the Taylor expansion a(t) = a(ty)[1 + Ho(t — to) + O((t — 19)*)]:

1 t
l—zz—=@31+H0(t1—t0)
1+z

a(to)
or
= Ho(t() — l‘]) B~ H()d/c
for small z, small ry — 11, d the distance of the galaxy from us

This is Hubble’s law.
Originally discovered by Alexander Friedmann (cf. Stigler’s law).
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Pedestrian derivation of Hubble’s law and redshift

For scale factor expansion, d(¢) = a(t)/a(ty) - d(ty):
“Instantaneous speed” of a galaxy

v(t) = %d(t) =H@®) d(t) =~ Hyd(t).

Classical (moving-source) Doppler effect:

czZ =7V

in other words:
cT = H() d.

“Speed of recession” — we’ll come back later to the question
whether or not that is a real speed.

Simon Glover & Markus Péssel FLRW models: Kinematics, dynamics, geometry
I
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Solving Einstein’s equations for FRW

00 component of Einstein’s eq.:

22 2
+K
3825 = 8nGp
a
i0 components vanish. ij components give

a* + Kc? 8nG

)
Q|
+
[\S)
Il
|
[Se]
<

These are the Friedmann equations. Their solutions are the
Friedmann-Lemaitre-Robertson-Walker (FLRW) universes.
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FLRW spacetime basics FLRW dy i FLRW [ Light proy ion / di Meaning of Expansion

Re-casting the Friedmann equations

Take what we will call the first-order Friedmann equation

a* + Kc? _8nGp

a? 3 ()

and for a # 0, differentiating the above and inserting the
ij-equation, derive

. _ a4 N 2

p= —35(/) +p/c?) = =3H(t)(p + p/c?).
— this amounts to energy conservation (as you've seen in
Monday’s exercise).
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The physics behind the Friedmann equations

Multiply
. a
p=-3_(p +p/c?)
by a’c? and integrate:
d , 5 dd®
- — =o.
a PPy

The volume of asmallball 0 < r < ris

= fff VEr8o08eg dr d0ds = a v(ry).

Using this, rewrite
dv

— V) + =0.
(,oc ) Py =
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The physics behind the Friedmann equations

d av
Locvy+p = 0.
qPeVI TPy

but pc? is energy density — pV = U is the system’s energy!
= dE=-pdV

— change in energy is the “expansion work”.

If p = 0 (dust universe), dE = 0, so energy/mass is conserved!
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Physics behind the Friedmann: deceleration

Recombine Friedmann equations to give equation for a (which we’ll
call the second-order Friedmann equation):

a 4nG
== -+ 3p/) @

Almost Newtonian — but in general relativity, pressure is a source
of gravity, as well! (E.qg. stellar collapse.)

This leads to an expression for the deceleration parameter:

447G
q0 = —(,00 +3po/c?)

(with pg and pg the present density/pressure).
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Newtonian analogy

Using purely Newtonian reasoning, one can derive the Friedmann
equations for dust for K = 0 or, with a slight modification for the
source terms of Newtonian gravity, also for matter with pressure.

Details = You’ve done this in Monday’s exercise

FLRW models: Kinematics, dynamics, geometry
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Different equations of state

Now, assume equation of state p = wpc?. Then

p=-30+p/e)

becomes

DI

= 231 +w)2
a

which is readily integrated to

o~ a3

This describes how the cosmic content is diluted by expansion.
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How does density change with the scale factor?

Earlier on, we had looked a three different equations of state
p = wpck:

@ Dustw=0 = p~1/a°

® Radiation:w=1/3 = p~1/a*

@ Scalar field/dark energy: w = —1 p =const.

Whenever these are the only important components, a universe
can have different phases — depending on size, different
components will dominate.
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FLRW spacetime basics

Different eras depending on the scale factor

Density/present density
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Different eras depending on the scale factor

102
>
= 101
2
]
3
g 0
2 Dust
s
> 100
2 Dark energy
[=}
- -
10 Radiation
1014 I I I I I I I
10°° 10 10 107 10 107" 100 10" 10?

Relative scale factor a/ay

Two caveats:

e This says little about evolution — some values of a might not even
be reached

e In reality, matter will change — particles might start as dust
(non-relativistic) and, at smaller a, end up at high energies and thus
as radiation (relativistic particles)
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FLRW spacetime basics (W) FLRW [ Light proy ion / di Meaning of Expansion
For small a: Radiation dominates!

102 |

10}

107
Dust

Dark energy

Density/present density

107 Radiation

10

14 I I I I I I I
10°° 10 10 107 10 107" 100 10" 10?
Relative scale factor a/aqy

o |[f sufficiently small values of a are reached, radiation contribution
(including relativistic particles) will dominate everything else

e This will be the basis of our models for the early universe
(convenient — no need to worry about dust and dark energy at
early times!)
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The initial singularity

We derived the second-order Friedmann equation as

a 4nG 4dnG
35 = __(P + 3P/C ) = __(Pdust + 2 prad — 2pA)

For universes where A does not dominate completely, d/a < 0:

fo

Initial singularity — special case of Hawking-Penrose theorems

FLRW models: Kinematics, dynamics, geometry
I

Simon Glover & Markus Possel



FLRW spacetime basics FLRW dy i FLRW [ Light proy ion / di Meaning of Expansion

If a A > 0 universe becomes large, A dominates

1o [
1014 ]
U
> 107
2 Dust
s
S
Dark energy
- -
10 Radiation
1014 I I I I I I I
107010 10 107 102 107" 100 10" 107

Scale factor a

Remember the deceleration parameter:

47G
3
Occasional misunderstanding: “Dark energy is negative, and acts

like negative mass” — no: what accelerates the expansion is the
negative pressure, pa = —pac?, and the factor 3!

qo = ——(po + 3po/c?).
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Introducing the critical density

Evaluate the Friedmann equation

3 az;—chz =8nGp
at the present time £, to obtain
8nG Kc?
BET T
Where pg = p(tp). The expression
_ 3H
Pco = G
is called the critical density (at the present time).
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Critical density and geometry

The present-time Friedmann equation then becomes

/ 1+ ke
PO/PcO = X

agHy
This equation links the present energy (mass) density pg of the
universe with the Hubble constant Hy (partly disguised as p.) and
the geometry K:

oo >po < K=+1 spherical space
po=po © K=0 Euclidean space
po<po © K=-1 hyperbolical space
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Misconception about critical density and geometry

po > po  © spherical, finite, cosmos will collapse
po=po << Euclidean, infinite, cosmos will keep expanding
po<po < hyperbolical, infinite, cosmos will keep expanding

Synonyms: finite = “closed universe”, infinite = “open universe”.
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FLRW spacetime basics FLRW dy i FLRW | Light proy ion / di

Meaning of Expansion

Misconception about critical density and geometry

po > po  © spherical, finite, cosmos will collapse
po=po << Euclidean, infinite, cosmos will keep expanding
po <pco < hyperbolical, infinite, cosmos will keep expanding

Synonyms: finite = “closed universe”, infinite = “open universe”.

e |ocal geometry does not control topology!
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FLRW spacetime basics FLRW dy i FLRW [ Light proy ion / di Meaning of Expansion

Misconception about critical density and geometry

po>po < spherical, finite, cosmos will collapse
po=po << Euclidean, infinite, cosmos will keep expanding
po <pco < hyperbolical, infinite, cosmos will keep expanding

Synonyms: finite = “closed universe”, infinite = “open universe”.

e |ocal geometry does not control topology!

e Direct correspondence with collapse or not only for A = 0!

FLRW models: Kinematics, dynamics, geometry
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Parametrizing simple FLRW models

Assume that there is no interaction between dust (which we will
now call simply “matter”, index M), radiation (index R) and dark
energy (index A): Densities and pressures just add up.

Rescale all present densities in terms of the present critical
density, and re-scale K accordingly:

Qa0 = pa(t0)/pcos Qo = pum(to)/pco,
Q0 = pr(t0)/peos  Qxo = —Kc?/(apHp)?.

Present-day Friedmann equation becomes
QA() + Qm() + Q,() + QK() =1.
This is how the densities are linked with spatial geometry.
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FLRW spacetime basics FLRW dy i FLRW

Light proy Meaning of Expansion

Re-writing the Friedmann equations in terms of the
Qs

Scaling behaviour of the different densities means that

—3H§Q @\ 0 @ \' o
P(f)—% mO(%) + ro(a_t)) + L0

Define x(¥) = a(t)/ay = 1/(1 + z) to rewrite the first-order Friedmann

equation (1) as

H([)2 = H% [QAO + Qko x_2 + Q0 X_3 + Q0 X_4] .

Simon Glover & Markus Pdssel

FLRW models: Kinematics, dynamics, geometry



FLRW spacetime basics FLRW dy i FLRW [ Light proy ion / di Meaning of Expansion

General considerations for FLRW models

Re-cast the previous equation as

dx

Hyx \/QAO + Qko x2 4+ Q.0 X3+ Q0 x4

dr =

which governs the time dependence of the cosmic scale factor!
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FLRW spacetime basics FLRW dy i FLRW [ Light proy ion / di Meaning of Expansion

The age of the universe in FLRW models

Simple application: Choose ¢t = 0 by a(0) = 0 [cosmic time starts at
initial singularity]. Integrate to the present time (which has x = 1
and ¢ = fp). This gives 1y, the age of the universe:

1
1 f dx
Hy 0 X \/-QAO + Qxo x 2+ Q.m()x_3 + .Qr()x_4.

fo
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The acceleration (ex deceleration) parameter ¢

Present pressure:

3H} 1
po = %(_QAO + gQrO)-
inserting in
q0 = ?(ﬂo +3po),
we find that

1
qo = E(QmO —2Qp0 +2Q,0).
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The fate of FLRW universes

Rewrite
a* + Kc? _81Gp

a? 3c4

as
a* = (HO(JO)2 [Qon2 + Qmox_l + Qrox_2 + Qko]

where x = a/ay.

If we want a re-collapse, we must have a = 0 at some time, in other

words:
QA())CZ + Qmox_l + Qo + Qrox_2 =0.
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The fate of FLRW universes

Consider universes with negligible Q,¢ and with turning point at x
that is not too small — realistic for universes that become large
and matter-dominated.

Then the “collapse condition” becomes
Qno x> + Quo + Qxox =0

From present-day Friedmann equation: for x = 1, the LHS is +1
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The fate of FLRW universes

Conclusions from

Qao x> + Qo + Qxox =0  where Qgo = —K/(agHy)*

e For Qxp < 0, for sufficiently large x, the expression will become
negative = must have a zero

e For Q¢ =0, and since Q,,p > 1, recollapse requires K = +1

e For Qup > 0, recollapse if Qg sufficiently negative (again, K = +1).
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Examples for FLRW universes

Fairly complete classifications exist.

We will study special cases only.
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Overview of FLRW solutions for Q,; =0

A>0 A=0 A<O \
R R R
1
k=-1
t t t
0 i) i)
f R Einstein— R
de Sitter
i
k=0
t t
0 (i) {ii) t
I A>A, A=A,
R R R R
{iic) Eddington—
Lemaitre
Lemaitre lia) Einstein
k=+1 o
t t t t t
0 (i) (i) [ 0

Image from: d’Inverno, Introducing Einstein’s Relativity, ch. 22.3
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Flat radiation universe

Only non-zero contribution: Q,¢ = 1 (density must be critical
because of flatness)

t X

Hofdt:fxdx

0 0
so that

a=ag\2Hyt x V.

Age of the universe:
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Flat matter universe

so that

a=ay(3/2-Hy)*? « 1?3

Age of the universe:
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de Sitter universe

In this case, the only contribution is the cosmological constant Q.
We assume space to be flat, so Qg = 1.

The integrand diverges for x = 0, so we choose as an integration
boundary the present time ¢, for which x = 1:

t X
dx
mj&:f — In(x)
; J X VQao

so that

a=ap exp(Ho[t — D

For this model, de Sitter space-time, the universe is infinitely old —
there is no time at which the scale factor is exactly zero.
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Light propagation / distances in FLRW spacetimes

Key to astrophysics: Distance determinations (distance ladder)!

e Deduce distance from known length scale (e.g. parallax)

e Deduce distance from known luminosity (standard candle methods)

Both involve the geometry of space. Are they influenced by
universal expansion, as well?

FLRW models: Kinematics, dynamics, geometry
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Comoving and proper distance

In a FLRW universe:

2 _ 242 2
ds® = —c*dt* + a(?) [I—Krz

+ erQ] = —c*dr? + a(t)*g(D);dx’ dv
In this coordinate system, galaxy locations up to scale can be
described by radial coordinate values: comoving distance. Good
to keep track of where galaxies go! (But: usually dimensionless;
order, not length.)

“Instantaneous distances”: stop the universe and measure with a
ruler. These are the distances at a fixed time as described by the
spatial part of the metric: proper (spatial) distance. But: Depends
a lot on coordinate choice (cf. Milne universe, later)!

Also, neither are directly measurable.
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Co-moving distances related to redshift

From FRLW metric and ds> = 0, for light propagation

cdr dr arcsin(r) K = +1
= = R e——— r K = 0
a() V1 - Kr? arsinh(r) K = -1

Consider a source at radial coordinate r(z) whose light reaches us
with redshift z (using the Friedmann equation with x = a(?)/ao):

to 1

f cdt ¢ f dx
a(t) ~ aoHp 2 2 3 =
) 1l X \/QAO + QKox + Qm() X0+ Qr() X

FLRW models: Kinematics, dynamics, geometry
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Co-moving distances related to redshift

0 d dt
o[
1(2) a(t)
aoHo J1/(1+2) x2 \JQpo + Qrox~2 + Qo x3 + Qo x4
where
siny K=+1
Shyl=4y K=0
sinhy K=-1
Simon Glover & Markus Péssel FLRW models: Kinematics, dynamics, geometry
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Proper distance related to redshift

Use

Q Kc?
KO =~

2172
agHg
and sinh ix = i sinx to re-write as

drow(z) = apr(z)

= - sinh | vVQko f dr

HO V 1142 x2 \/QA() + QK()X_Z + Qmox_3 + Qrox_4

FLRW models: Kinematics, dynamics, geometry
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Light travel time

In astronomy, measuring distance by light travel time is common!

Determine travel time by using earlier expression relating dr and dx
and integrating up:

1

1o — 1(2) f &
0—12) = :
HOI/(1+ ) X \/Q.AQ + QK() x‘2 + Qm() x‘3 + Q-rO x‘4
Z
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Angular distance

Consider an object at redshift z with (proper) size L:

Under what angle will we see that object? Go back to FRW metric:

dr?
1-Kr?

ds? = —=c*d? + a(t)? [ + r2(d6® + sin® 0d¢?)]|.
We've seen how light with ds? travels in the radial direction.
Consider two light rays reaching us with a (small) angular
difference A6 = a.

FLRW models: Kinematics, dynamics, geometry
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Angular distance

Now consider the time ¢; when the light was emitted. Use the
metric and insert the angular difference A6:

dr?
2 242 2
ds® = —cdt” + a(r) [I—Krz

+ r2(d6* + sin? 9d¢2)] .
= ds=a(t)rga = L.

Define angular distance analogously to classical geometry:

dnow(2)
1+z

L
da() = = = a() @) = la—fz rz) =

(cf. explicit formula for d,ow calculated earlier).
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Classical luminosity distance

Absolute luminosity L is total energy emitted by an object per
second.

Apparent luminosity (energy flux) f is the energy received per
second per unit area.

For isotropic brightness: total energy passes through sphere with

radius r, SO
L

f= 4nr?’

If L is the same for each object in a certain class, or can be
determined from observations, we have a standard candle.
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FRW luminosity distance

d 2
ds? = 22 + a(t)? | —— + rX(d6? + sin? 0d¢?)|.
1 - Kr?

Corrections to classical derivation for light emitted at time #; by
object at redshift z:
e Energy emitted at time 7, has spread out on sphere with proper area
4nri(2)%a’(ty) (use symmetry between the object’s and our own
position, r1(z) = r(z))

e Photons arrive at a lower rate, given by redshift factor
a(h)/ag = 1/(1 +z)

e Photon energy is E = hv; redshift reduces energy by 1/(1 + z)
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FRW luminosity distance

Result:

L
 drr(2)%ad(1 + 2)?

Define luminosity distance by

B L
f B 47rdL(Z)2 ’

SO

di(2) = aor(z) - (1 +2) = dpow(@)(1 +2) = da(2) - (1 + 2)%.
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Different notions of distance

@ redshift z — for monotonously expanding universe, good distance
measure; model-independent, can be measured directly

® proper distance d,,, — instantanous (w.r.t. cosmic time) distance
® co-moving distance r — coordinate distance, useful for tagging
@ light-travel time — the original light year

@ angular distance d, — for observations of standard rulers

@ luminosity distance d; — for observations of standard candles
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Meaning of Expansion

Different notions of distance

100 T T T T T T
EdS ¥ Empty LCDM
— D, [ — D, —D,
10 - DI’!W - DHW - Dn:m
F— Dy -E — Dy - Dy E
:J-'\ E :I-‘\ ‘JW\
o L
S TF k3 £3
\' \
0.1k + 4 J
0.01 " " " " " "
001 0.1 1 0.01 0.1 1 0.01 0.1 1 10

From: Ned Wright’s cosmology tutorial. EdS = Einstein—de Sitter universe, K = 0, Q0 = 0.
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Causal structure of spacetime: Which parts are accessible? Which
are inaccessible?

Most prominent example: Black holes with their event horizon —
what’s behind the horizon cannot communicate with the outside.

Two varieties: particle horizon and event horizon.
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Particle horizons

In a universe with finite age, the observable universe is finite, as
well.

Re-writing the FLRW metric once more, using ds? = 0 to describe
light reaching us at the present time, ¢y, from some distance r.
Light with r,.x has been travelling since the big bang (¢ = 0):

fo Fmax
fc dr : f dr’
J a(t’) J V1 - Kr/Z'
But we do not even need to solve for ry.x, since what we're really
interested in is the proper distance:

Fmax fo

d (t0) f dr’ f cdr
. =a N ——Y .
particle\Z0 0 J g2 0 J a(t’)
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Particle horizons

to
dr
a(t)
0

dparticle(to) = aopc

One possible definition for the observable universe!
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Event horizons

Which events happening at present will we see? Which not?

Same basic derivation from FLRW metric:
Imax Tmax(1g)
f cdt’ f dr’
. a(t’) S VIi—Kr?
0

max 1S infinite for infinitely expanding universes, finite for
re-collapsing ones. We'’re again interested in proper distances:

T'max (1) max
dr dr’
devent(to) = apc —— =aqpcC —.
5 V1 — Kr'? a(t’)
1o
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The Milne universe: The kinematics of expansion

Edmund Arthur Milne (1932) — meant as an alternative to gr;
modern view: instructive idealized case. FLRW universe with p = 0
and p = 0 — no dynamics, only kinematics.

Imagine an explosion at the origin of Minkowski space, sending
particles in all directions. These particles have all possible speeds,
right up to as close to ¢ as you can get.

What does an observer in such a cosmos see and measure?
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Milne universe: Space-time diagram

ct
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Proper times and particle density in the Milne

universe

In our inertial frame, each particle is characterized by a constant
speed v, moving radially with r = vz.

Let each particle carry a clock showing its proper time 7, set to
zero at the explosion event in the origin.

Then
2 =22 -2 =21y

so surfaces of equal T are hyperbolas.

Note analogy with definition of cosmic time — via proper time of
substratum particles!
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Spatial metric on surfaces r =const.?

With T our cosmic time, how do we measure distances at one
instant in time, T = 7y =const.?

For this case, from 73 = 2 — r?/c?

dr?

d? = — 7
S T I (eror

Introduce a “proper length” coordinate y (proper distance from the
reference particle, at rest at » = 0) as
X

r dr
fum [

= ¢t sinh™ ! (r/c1o).
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New coordinates 7, y related to ¢, r as

-~
Il

7 cosh(y/cT)
ctsinh(y/cT1)

\
Il

(@, ¢ kept the same).
Induced metric from

dt = dr [cosh(y/cT) — x/ct sinh(x/cT)] + sinh(y/c7) dy
dr cdr [sinh(y/ct) — x/ct cosh(y/ct)] + cosh(y/ct) dy

2
ds? = —c?dr? (1 - ()(_)2) 2 4rdy + dy? + (e)? sinh(y/er)dQ
CcT CcT
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Cosmological coordinates for the Milne universe

This is not quite where we want to be — we want co-moving
coordinates, so for particles with constant spatial coordinates, dr is
proper time. Ansatz:

y=a(t)¢ = dy=aédr+adés.
Once more, substitute in the metric:

afz

ds?> = —czdrz(l 2
T

a—c—l])+2dtd§§a[a—;]
+azd§2 + (CT)2 sinh(aé/ct)dQ

This takes on the desired form for aa/t, or a(t) oc 7. For simplest
form, choose a(r) = ct.
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Cosmological coordinates for the Milne universe

Finally, in coordinates 7, ¢, 0, ¢:

d? = —cldr? + aX(7)[dg? + sinh’(£)dQ
with a(t) = 7.

In comparison with the hyperbolic metric we derived earlier, this is
FLRW with K = —1, a hyperbolic homogeneous space.

This also shows that space geometry is indeed homogeneous:
With Lorentz transformations, we can shift the “center of the
universe” to any location, and the result will be the same!
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Density of the Milne universe

So far, we haven't specified the density of the Milne universe —
which should be homogeneous in cosmological coordinates!

Take some reference time 1y, and assume that in our co-moving
coordinate system, at that time, a sphere of volume V; contains N
particles, making for number density ny = N/V,. At some later time
7, the same N particles will now be contained in a volume of

3
a(T)) Vo _ph

a(to) T

V(r) = (
Thus (proper) particle number density goes as

n(t) = 172n 7(3).
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Density of the Milne universe

Now, go back to r, r coordinates. From this point of view,

n(t) = 772n 7(3)
is a proper particle density; in our external reference frame, it is
Lorentz-contracted in the direction of motion, giving a number
density n.,; = n(t)y. But vy can be written as t = yt, so

3
n(t) no/Ty t
next(t’ I’) = n(T)’)/ = T I = ! t= nO/T?) ([2 _ r2/c2)2'

This is clearly singular at the light-cone — which closes off the
universe as soon as we switch on gravity!
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Superluminal galaxies?

Distance y = a(r)¢é = ct¢ from galaxy at co-moving coordinate

value ¢ changes as
dy
E = Cé:.
For & > 1, this is clearly “superluminal”. Yet we are safely in the
framework of special relativity — this “speed” is a mere coordinate
artefact!
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The cosmological redshift in the Milne model

What about light reaching us (at the “center particle”) at time #,
emitted at distance r, at time ¢,?

Relativistic Doppler shift says

1+r./ct,
+1= 4 /—
. 1-r./ct,
Cosmological redshift says

a(to) _ 7

z+1= = —.
a(t,) Te
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The cosmological redshift in the Milne model

But by = T cosh(y/ct), r = cTsinh(y/c7), 2 =12 —(r/c)?, and
since
to=1t.+r./c:

70 te+re/c (t, + ro/c)? |1 +re/et,

Te (te re/c)(te +re/c) 1 _re/Cte
The speC|aI-reIat|V|st|c Doppler shift gives the correct cosmological
redshift!

This is true more generally, as long as gr’s rules for comparing
velocities are taken into account properly, cf. Bunn & Hogg
arXiv:0808.1081
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Local effects of expansion?

Does expansion have an effect locally? Do atoms, planetary orbits,
galaxies expand? cf. Giulini, arXiv:1306.0374v1

Overall: Average density means no net force on, say, galaxies =
expansion on largest scales. But what about bound systems?

Pseudo-Newtonian picture: The different inertial frames are
“moving away” from each other by the expansion,

. a
X=—-X= —qu(Z,X’
a

gives additional term in Newton’s equations,
a >
m(x — -X) = F.
a

Only a matters, not a! Not some “friction force” pulling everything
along with expansion!
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Expansion and the Coulomb potential 1/3

Setting up a modified Coulomb potential (electromagnetism,
gravity): Energy and angular momentum

1-2 _ 24 _
2r +U(r)=E, r¢=L,

with the effective potential

L Cc 1, ,
=— - —+-A
v 2r2 r+2r’
where
GM  gravitational field
C= Q¢ glectric field
dregm
andA:—CI()Ho.
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Expansion and the Coulomb potential 2/3

=
)
r
Critical radius at
3| C
e = Z
Amounts to

13

( Mﬂ@ / 108pc  gravity

e = o\l/3 \
(;) 30AU electrostatic
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Expansion and the Coulomb potential 3/3

(%)1/3 108pc  gravity
e = .

(o}
3
(%)/ 30AU electrostatic

means that:

e for a hydrogen atom, instead of the Sun, the electron would have to
be near Pluto

e for the Sun, planets would need to be far beyond the neighbouring
stars

e for a galaxy at 10'> M, next galaxy beyond 1 Mpc

Recall go = *2%(pg + 3po). — for ordinary Dark Energy,
density/pressure are constant. If those evolve, as in some
quintessence models, there could be a “big rip”!
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The tethered galaxy problem 1/2

Assume a galaxy that, in cosmological coordinates, is momentarily
at rest (that is, its proper distance doesn’t change to first order):
How will that galaxy move?

Naive “Space is expanding” view would expect: Galaxy slowly
begins to move away from us.

Instead: Hy doesn’t have any influence at all; purely dynamical
effects!

In particular, without dark energy, galaxy moves towards us before
sorting itself kinematically into the Hubble flow.
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The tethered galaxy problem 2/2
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Davis et al. arXiv:astro-ph/0104349
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So what is the expansion of space?

As Milne, tethered galaxy, bound systems would suggest:

e First-order expansion rate H is kinematical — depends on initial
conditions of substrate particles

e Smaller, dynamical effects (Q,.0, Qa0, . . .) affect all particles present
e |nitial conditions are important!

¢ Analogies like rubber band space, space as a viscuous fluid, space
being created between galaxies are misleading

e Yes, the cosmological redshift can be understood as a relativistic
Doppler shift

¢ No, there are no superluminal galaxies if you take proper care not to
over-interpret coordinates

... but this question still leads to amazingly heated discussions!
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Literature: Cosmology

Little, Andrew J.: An Introduction to Modern Cosmology. Wiley
2003 [brief and basic]

Lambourne, Robert J.: Relativity, Gravitation and Cosmology.
Cambridge University Press 2010

Dodelson, Scott: Modern Cosmology. Academic Press 2003.
[more advanced]

Weinberg, Steven: Cosmology. Oxford University Press 2008
[advanced]

Script by Matthias Bartelmann http://www.ita.uni-
heidelberg.de/research/bartelmann/files/cosmology.pdf
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