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Intro Observational facts Model-building General relativity FLRW metric

@ Introduction: The biggest model of all

@ Observational facts about the universe: an overview
@ Model-building

O Elements of general relativity

@ The Friedmann-Lemaitre-Robertson-Walker metric
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Building the biggest model of all

e Physicists always build models

e Model: simplified representations of some part of reality, capturing
essential aspects

e Model simplifications: Spatial restriction; sub-structure neglected
(e.g. continuum mechanics)

e How can one model the whole universe?

e Apparently, that depends on the universe: some are modelable,
some not.

...so what are the properties of our universe?
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Free lines-of-sight!

Imagine a:

e planet in a dust envelope
e Solar system in a dust envelope

e Solar system in a dense globular cluster

= we can hope to make statements about the universe as a whole
because we can see to great distances!

Simon Glover & Markus Pdssel Introduction, General Relativity, FLRW Spacetime



Observational facts Model-building General relativity FLRW metric

Free lines-of-sight!

Hubble Deep Field

Lookback time
> 12 Gyr

Credit: R. Williams
(STScl), the Hubble
Deep Field Team
and NASA
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Olbers’ paradox (1823)

Heinrich Wilhelm Matthias Olbers (1758-1840):
The universe cannot be infinite and stationary

If it were: Every line-of-sight would end in a star;
constant surface as luminosity goes with 1/7> but
angular area with 2.

(Dust/absorption? If stationary, thermal
equilibrium would give dust the same surface
brightness!)
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Large-scale homogeneity/isotropy vs. structure

Stellar densities ~ 10° kg/m? on scales of 10° m
vs.

Interstellar medium, density ~ 107! kg/m?,
average interstellar distances 10'°...10'7 m

Simon Glover & Markus Pdssel Introduction, General Relativity, FLRW Spacetime



Intro Observational facts Model-building General relativity FLRW metric

Large-scale homogeneity/isotropy vs. structure

Galactic densities (including DM) ~ 10724 kg/m?
on scales of 10> m (including halo)
(after arXiv:0801.1232v5 p. 16 - virial radius)

VS.

Intergalactic density (gas + DM) ~ 10727 kg/m?,
intergalactic distances 10%2...10% m
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Large-scale homogeneity/isotropy vs. structure

2dF Galaxy Redshift Survey 0

704

<
>

2dF galaxy survey (but: we're getting ahead
of ourselves; distances measured via redshift)
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Systematic redshift-distance relations
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FIGURE 1 .

Velocity-Distance Relation among Extra-Galactic Nebulae.

Hubble 1929: “A Relation between Distance and Radial Velocity among
Extra-Galactic Nebulae” in PNAS 15(3), S. 168ff.
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HST Key Project results
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Putting it all (almost) together
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Cosmic microwave bac und: Penzias & Wilson

Image: NASA
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Precision CMB: COBE-FIRAS (Mather et al.)

Data from Fixsen et al. 1996 |
Best Planck fit: T =2.728 K

Range shown: spectrum +3 ¢

—

ot

(==}
T

Intensity in MJy/sr

10 15 20
Frequency in 1/cm

o
ot

Data from Fixsen et al. 1996 via http://lambda.gsfc.nasa.gov
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Precision CMB: COBE-FIRAS (Mather et al.)

Data from Fixsen et al. 1996 |
Best Planck fit: T =2.728 K

Range shown: spectrum £100 o

—

ot

(==}
T

Intensity in MJy/sr

10 15 20
Frequency in 1/cm

o
ot

Data from Fixsen et al. 1996 via http://lambda.gsfc.nasa.gov
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Precision CMB: COBE-FIRAS (Mather et al.)

Data from Fixsen et al. 1996 |
Best Planck fit: T =2.728 K

Range shown: spectrum £500 o
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Data from Fixsen et al. 1996 via http://lambda.gsfc.nasa.gov
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CMB inhomogeneities

Image: ESA/Planck Collaboration
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CMB inhomogeneities: Power spectrum
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Fig. 32 in Bennett et al. 2013
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Matter content of the universe

e Stars: Easy to detect! (Extinction maps needed, though)

Dust within our galaxy: IR observations

Atomic hydrogen: 21 cm line, absorption lines

Molecules: IR, radio

Very distant warm plasma: Hard to detect!

More general mass measurements: Use gravitational probes (e.g.

satellite galaxies orbiting a galaxy) as tracers.

Virial measurements: Dispersion o related to attracting mass by
, GM

o~ —.
R
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Matter content: Overall density
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Fig. 2 in Bahcall et al. 2000, arXiv:astro-ph/0002310

where Q ~ p/(107%0kg/m?)
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Dark matter

Deviation from Kepler potential as generated by visible
contributions to mass (here van Albada et al. 1985):
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Dark matter

e no electromagnetic interaction, just gravitational

e first postulated by Fritz Zwicky to explain motion within galaxy
clusters (virial theorem)

e direct detection experiments: inconclusive and, currently, somewhat
contradictory

e WIMPs: particles based on supersymmetric extensions? = LHC
e several sort-of-independent types of evidence:

e Galaxy rotation curves

e Dynamics of galaxy clusters

e Gravitational lensing (including Bullet cluster)

e Cosmological (later): Fluctuations in primordial plasma

(or alternatively: modified dynamics, i.e. MOND?)

Introduction, General Relativity, FLRW Spacetime
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Matter content of the universe

Dark Matter
[ = 49% |
Q= {Qd - 26.8%}_31‘7%
Qr = 0005% Dark Energy
Qr = 683%

Image credit: ESA/Planck Collaboration

Wobei Q;, = ordinary, baryonic matter (protons, neutrons, ...)
Q, = dark matter (no interaction with light)

Qp = dark energy (whatever that is, but it accelerates the
expansion)
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Age determinations

Trivially, nothing in the universe can be older than the universe
itself.

(There was a time when that appeared to be a problem!)
First possibility: Radioactive dating. Some half-life values:

5y 7-10%a
22Th  14-109a

= Heavy elements formed in the r-process (rapid addition of
neutrons) in core-collapse supernovae (some modelling involved!)
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Example for very old, metal-poor star (Frebel, Christlieb et al.
2007): U- and Th- dated to 13.2 Gyr!
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Stellar ages

12

Model for stellar evolution:  ,
stars move in the
Hertzsprung-Russell Horizontal .
diagram (color-magnitude | ¥, Mﬁgﬁ&wr
diagram) as they evolve.

* Red Giant

> % Branch
Lifetime 7 ~ L723, L~M?> ] : ]
andt~ T
Oldest globular clusters o ]
give 13.2 +2 Gyr
(Carretta et al. 2000). 22 ¢ 1
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Other relevant observations

... more specialized, and directly in response to cosmological
models:

e Number counts by distance (to counter Steady State theory)

e Power spectrum of galaxy distribution by distance: Baryonic
Acoustic Oscillations

Tolman’s surface brightness test (Lubin & Sandage 2001)

SN light curve time dilation (Leibundgut et al. 1996)
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Cosmological model-building

Simplest cosmological models:
Homogeneous and isotropic universes

Alternative definition:
Copernican principle/Cosmological principle: We occupy no
special location in the universe.

Universe filled with a fluid, the “cosmic substrate” — at early times,
primordial plasma; at later times, with “galaxy dust”

Introduction, General Relativity, FLRW Spacetime
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Overview of cosmological modelling

Homogeneous models
Inhomogeneities
Early, hot universe
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Overview of cosmological modelling

Homogeneous models

General relativity

FLRW spacetimes

Inhomogeneities
- ~|  Newtonian perturbations
Early, hot universe Newtonian numerics
Thermodynamics/Statistics Raytracing
Particle, nuclear, atomic ph.

Introduction, General Relativity, FLRW Spacetime
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Overview of cosmological modelling

Homogeneous models

General relativity

FLRW spacetimes

Hj kinematics

Q. Qp, Qp, Q, dynamics ( )

Inhomogeneities
- ~|  Newtonian perturbations
Early, hot universe Newtonian numerics

Thermodynamics/Statistics Raytracing

Particle, nuclear, atomic ph. power spectrum

n baryon-photon ratio scalar vs. tensor

inflaton properties reionization time

Introduction, General Relativity, FLRW Spacetime
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General relativity (1915)

e Einstein’s theory linking gravity with space-time geometry

Connection made by Einstein (field) equations

generalization of special relativity

geometry in general non-Euclidean (curved)
e basic descriptor of space-time geometry: metric

e sources of gravity: mass, energy, pressure

For cosmology:

We need to understand space-time geometry (necessary to
understand light propagation, horizons, age of universe, distances)
We will take as given what gr says about the dynamics of
homogeneous/isotropic universes

Introduction, General Relativity, FLRW Spacetime
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General relativity vs. curved surfaces

4D space-time < 2D (curved) surface

Particle worldline curve on surface

)

Free-fall worldline & straightest-possible lines on sur-
face (geodesics)

Equivalence principle: in free fall, < on infinitesimal scales, curved
physics = special relativity surface looks flat

deviation from flatness: curvature < deviation from plane: curvature
tensor(s) radii

Geometry is encoded in a mathematical object: the metric.
We need to know how to interpret a metric!
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A simple curved surface: the sphere

[more info on the blackboard]
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Introducing general coordinates

The three-fold use of coordinates:

e Labels to identify points
e Encode closeness (topological space)

e Encode distances (space with metric, e.g.
= @ =20 + 01 =y + @ - 2))

As we generalize from simple, Euclidean space, we will have to
look at these roles in turn!

Introduction, General Relativity, FLRW Spacetime
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Coordinates on a wavy surface

Let’s begin in two dimensions: with a smooth, but wavy, hilly surface
(“Buckelpiste”):

Image: Andreas Hallerbach under CC-BY-NC-ND 2.0
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Coordinates on a wavy surface

Even better: Imagine that the surface is pure, smooth rock.

Now, put coordinate lines on it. (Purpose, for a start: Identifying
different points.)

The lines are going to be curvy and wavy.

Introduction, General Relativity, FLRW Spacetime
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Coordinates on a wavy surface

y=17

y=16
x=32

x=33
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Coordinates on a wavy surface

y=17

y=16
x=32

x=33

This if fairly simple - a parallelogram!
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Coordinates on a wavy surface

x=33

Assume an isometric view (straight down onto the plane): read off
3 parameters!
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Coordinates on a wavy surface

y=16
x=32 7 A

x=33

What's the length of the blue line between (32, 16) and P?
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Coordinates on a wavy surface

y=16
x=32

x=33

P = (bAy)il, + (a Ax) il, where i, - il, = cos @ means that

IBP? = a® Ax® + 2ab cos a AxAy + b* Ay>.

With this modification, our coordinates can be used to measure
lengths!

Introduction, General Relativity, FLRW Spacetime
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Defining the metric 1/2

IP]? = a® Ax* + 2ab cos @ AxAy + b* Ay*.
This was really an infinitesimal argument (lengths in the
neighbourhood of P):

ds? = a® dx® + 2ab cos a dxdy + b? dy’.

The coefficients will vary from location to location:

ds? = a(x,y)* dx? + 2a(x, y)b(x,y) cos[a(x,y)] dxdy + b(x, y)* dy*.

If we know all the coefficients, we can reconstruct the geometry of
the whole surface (except for embedding properties): The
coefficients, all taken together, form the metric

Introduction, General Relativity, FLRW Spacetime
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Defining the metric 2/2

Metric (working definition): A set of (position-dependent)
coefficients that allow one to compute lengths from infinitesimal
coordinate differences.

2D example:

ds?

a® dx* + 2ab cos a dxdy + b* dy?

a abcosa dx
(dx, dy) ab cos a b )(dy)

The metric can be written as a symmetric matrix, or a quadratic
form. Taking coordinate transformations into account, it behaves
like what is called a (symmetric, second-rank) tensor.

Introduction, General Relativity, FLRW Spacetime
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Writing the metric

Usual symbol for the metric: g
Line-element notation in D dimensions:
D
ds? = 3" gi()dridy;
ij=1
with g;; the metric coefficients.

In our simple example: g11 = a, g12 = g21 = abcosa, gy = b.

Introduction, General Relativity, FLRW Spacetime
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Examples for metrics: Euclidean

Cartesian coordinates in 3D Euclidean space

Pythagoras says:

ds? = d® + dy? + d2.

Introduction, General Relativity, FLRW Spacetime
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Examples for metrics: Spherical

Spherical coordinates in Euclidean space:

x = rsin(@)cos(¢)
y = rsin(f)sin(¢)
z = rcos(f)

Introduction, General Relativity, FLRW Spacetime
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Examples for metrics: Spherical

dx = dr sin(8) cos(¢) + r(cos(d) df cos(¢p) — sin() sin(¢p) d¢)
dy = dr sin(@)sin(¢) + r(cos(8) d sin(¢) + sin(d) cos(¢) d¢)
dz = dr cos(8) — rsin(6) dé.

Line element is:
ds? = dx? + dy? + dZ% = d? + r2(d&* + sin®(6)de?).

Tricky: visual inspection of metric doesn’t tell you: unusual
coordinates or curved surface?

Introduction, General Relativity, FLRW Spacetime
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Examples for metrics: Embedded spherical surface

Line element is:
ds? = dx? + dy2 +d? =dr? + r2(d02 + sin2(9)d¢2).

Restrict to dr = 0 — use 6, ¢ as coordinates on the surface (think:
latitude, longitude). This gives (induced) metric on the surface of a
sphere:

ds? = r2(d6? + sin®(6)d¢?).

with some r =const. the radius of the sphere — which can be used
to calculate arc lengths etc.!

Introduction, General Relativity, FLRW Spacetime
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Special relativity: Minkowski metric

One can define a metric in special relativity, but it doesn’t look like
the ones we’ve encountered. This is the Minkowski metric:

ds? = —c*d7? = d - *dAA.
This is invariant under Lorentz transformations!

But what does it mean?

Introduction, General Relativity, FLRW Spacetime
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Model-building

The meaning of the SR metric

General relativity FLRW metric

0,42 Ls = 125000 km
0,71 Ls = 212000 km

0,88 Ls = 262000 km

0,97 Ls = 291000 km

» X [Ls =300000 km]
1
ds? = —c*dr? = d2% - 2d.
Simon Glover & Markus Pdssel

Introduction, General Relativity, FLRW Spacetime
I



Intro Observational facts Model-building General relativity FLRW metric

The meaning of the SR metric

ds? = —c?d7? = d - *dA2.

tls]

097 Ls = 291000 km

X [Ls = 300000 km]

e timelike, ds> < 0: possible worldlines of (m > 0) particles
e lightlike, ds* = 0: light-cone

e spacelike, ds> > 0: possible spatial distance

Introduction, General Relativity, FLRW Spacetime
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Preparation for large-scale cosmic geometry

Natural coordinates for a homogeneous universe: 3D space is
homogeneous, as well.

Rigorous route: Killing vectors & form invariance, cf. sec. 13 in
Weinberg (1972)

Simpler question: What can we think of?

e Euclidean 3D space

e Embeddings, as in our derivation of the metric of the 2D spherical
surface

Introduction, General Relativity, FLRW Spacetime
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Choice of spatial metric: Euclidean

Euclidean space:
ds? = dx? + dy? + dZ% = d2.
dx

dy]zd)?T-d)?
dz

ds? = (dx, dy, dz) -

... this is invariant under translations, since d(¥ + @) = dx¥ and under
rotation, since ¥ — MX with M € SO(3) means

dM»T -dM) =de’ -MT M -dx=dx’ - dr.
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Choice of spatial metric: Spherical

What other homogeneous, isotropic spaces are there?

Think spherical; a spherical surface $"~! embedded in R” is
defined as the union of all points with n-dimensional coordinates x;
where

n
Z xi2 =R’
i=1
with R the radius of the sphere. Two-sphere S2: ordinary spherical
surface in space.

At least locally: Use n — 1 of the coordinates as coordinates on the
surface, X; one coordinate as embedding coordinate, &, then

ds? = d¥® + d&* where &+ =R%

Simon Glover & Markus Pdssel Introduction, General Relativity, FLRW Spacetime
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Choice of spatial metric: Spherical

ds?> = d® + d&? where & +# =R?

is invariant under rotations M € SO(4), which include homogeneity
(any point can be rotated into any other point) and isotropy (any
tangent vector can be rotated in any direction).

Easiest to see for > € R? : For each point P, one rotation (through
embedding centerpoint and P) that will rotate space around P
(isotropy), and two rotations that will shift the point into any given
other point (homogeneity).
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Choice of spatial metric: Hyperbolical

ds?* = d® - d&? where & -# =R

Higher-dimensional analogue of a saddle; invariant under
R e SOG3, 1).

This is the Lorentz group: SO(3) rotations (isotropy around each
given point) and 3 Lorentz boosts that take the point into an
arbitrary other point (homogeneity).

Introduction, General Relativity, FLRW Spacetime
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Unifying the spherical and hyperbolical spaces

Rescale ¥ — ¥/R and & — &/R:
ds* = R? [d;?z + d§2] where &+ =1.
From the constraint equation,
d(&? +7%) =0 = 2(£dé + X - dx)

relates the differentials. Substitute in metric to get unconstrained
version:

ds? = R? [d)?z + (@ d? ]

12
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Unifying the spherical and hyperbolical spaces

Introduce parameter K = +1, 0, —1 to write all three metrics in the
same form:

ds® = R? [df2+K(f.d)?)2]

1 - K2
where
+1 spherical space

0 Euclidean space
—1 hyperbolical space

K
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Spherical coordinates in space

Recall our spherical coordinates r, 8, ¢ related to the Cartesian

ones as
X = r-sinf-cos¢
= r-sinf@-sing
= r-cosf
We saw that

di? = dr? + r*(d6? + sin? 6 d¢?) = dr? + r*dQ.

Also, ¥ = 2 and % - dx = rdr.
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Spherical coordinates

Re-write the metric accordingly:

dr?
1-Kr?
Evidently, R sets the overall length scale.

ds* = Rz( + erQ).

This is nice and simple!
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Spherical coordinates

Another re-write of the metric: define

sin(¢) for K =+1
r=3 ¢ for K=0
sinh(/) for K = -1

sin*(£)
ds* = R*|d* + I dQ|.
sinhz(g’ )
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A caveat: global vs. local

The metric

describes space locally.

Globally, there is topology to consider
— e.g. a flat metric can belong to
infinite Euclidean space, but also, say,
to a torus (a patch of Euclidean space
with certain identifications).

= Later on, we will learn of a possibility how a finite universe might
be identified (cosmic background radiation)
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A caveat: global vs. local

e K = 0: 18 topologically different forms of space. Some inifinite,
some finite.

e K = +1: inifinitely many topologically different forms. All are finite.

e K = —1:infinitely many topologically different forms of space. Some
inifinite, some finite.
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Einstein Equations 1/3

8nG

G/JV + Ag/n/ = 7 Tuv

General: u, v can take on values 0, 1,2, 3 for the time direction 0
and space directions 1, 2, 3.

LHS: G, is a combination of second derivatives of the metric
coefficients w.r.t. coordinates — embodies a special form of
curvature, that is, deviation from flat Minkowski space. g,,, are
metric coefficients, A is called the cosmological constant.

RHS: Source term. In suitable coordinates, for a homogeneous
configuration, the tensor (matrix) 7, is the energy-momentum
tensor (also called stress-energy tensor).
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Einstein Equations 2/3

Famous shorthand by John Wheeler: Matter tells space-time how
to curve; space-time tells matter how to move.

8nG

Gﬂy + AgﬂV = 7 Tyv

G, encodes deviation of free-fall movements from flat space-time:
tidal gravitational forces. 7, encodes information about energy,
momentum, pressure, shears etc. associated with the matter. A is
a constant associated with the space-time in question.
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Einstein Equations 3/3

For an ideal fluid (no shear, just pressure) and in suitable
(co-moving) coordinates:

T, = diag(o, p/c*, p/c*, p/c?)

with density (includes energy!) p and pressure p. Can be used to

re-write Einstein’s equations as

8nG

G = =5 T

with new contribution to 7}, of
Ac* 5
PA = % = -palc
— special form of “energy content”: dark energy.
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Relativistic model-building

Coupled system of Einstein’s equations and equation of state
(specifying the properties of matter):

e General solutions: very messy = numerical relativity

e Exact solutions: simple models with symmetry

e Approximation (perturbation theory): e.g. gravitational waves

Each solution of general relativity is automatically a model
universe!
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What we will need for cosmology

e We must find a metric to describe our cosmological model

e Use gr-freedom of choosing coordinates to choose practical
coordinates

e Properties of metric are related to matter content
(“energy-momentum tensor”) by Einstein’s equations

e Free-particle movement in that model: geodesics

e Light propagation in that model: null geodesics ds* = 0
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Exact solutions

Exact solutions are, by necessity simple model situations.
Assumption: symmetries!

e Minkowski spacetime (empty)
e Schwarzschild solution (empty w/boundary: black hole)
e Kerr solution (rotating body: rotating bh, gravitomagnetism)

¢ Friedmann-Lemaitre-Robertson-Walker (cosmology, what we’ll
study now — homogeneous and isotropic)
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Simple cosmological space-times

Simplest cosmological models:
e Homogeneous and isotropic universes
e Cosmic substrate: “Galaxy dust”, constant (average) density

e There aren’t that many way a homogeneous universe can change
while remaining homogeneous!

e Change that preserves homogeneity/isotropy: p — p(t), density can
change with time
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Changing densities

Changing the density while preserving particle number (simplest
model; mass tied to particles): Over time, particles are spread out
over an ever larger (o < 0) or ever smaller (o > 0) volume:

Pattern (relative distances) the same — overall scale changes!
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Introducing the scale factor

Pattern (relative distances) the same — overall scale changes: All
distances between particles change proportional to the same
cosmic scale factor a(z),
a(t
) = S50 di ),
for 1z a specific moment in time chosen as reference (in
cosmology: usually 1y, the present time).
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The spatial metric

We can describe the pattern of particles by specifying their
positions at any fixed time; distance ratios will remain the same as
the scale factor changes.

Choose Cartesian system x, y, z at some reference time tz. Give
each galaxy-particle i the fixed position defined by x, y, z in that
system (co-moving coordinates).

Obviously, the unchanging coordinate values cannot reflect the fact
that the particles are spreading out (or drawing closer together).
Let the metric handle that:

(dsHspace = a(H)*(dx* + dy* + dz%).
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A more general spatial metric

We’ve seen more general homogeneous metrics (K = —1,0, +1).
Robertson (1935, 1936) & Walker (1937) showed these are the

only possible spatial metrics for a homomgeneous space-time.
Generalizing, we choose

2

1 - Kr?

(dSZ)space = a(t)2 ( + r2dQ) s

with
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Cosmic time and FLRW metric

How to choose time coordinate? Natural for given symmetry:
Proper time of each galaxy particle in the cosmic substrate.
Simultaneity chosen so that density is indeed constant. Result:

Kr?

2 212 o _dr 2 212
ds® = —c“dt” + a(r) [1 +rdQ}:—ch.
with dQ = d6? + sin® 6 dg?.
This is the Friedmann-Robertson-Walker-Metric — unique
description for homogeneous and isotropic spaces.
(GR also shows: r, 6, ¢ =const. is free motion — the galaxies of the
substrate stay where they are.)
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