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structure formation equations linearisation  nonlinearity ~ angular momentum  stability ~ summary

e Friedmann-Lemaitre cosmologies with matter and dark energy for
accelerated expansion

e thermal history of the universe explains element synthesis and the
microwave background

¢ inflation needed for solving the flatness and horizon-problems
¢ inflationary fluctuations are seed fluctuations for structure formation

e description of Gaussian, homogeneous fluctuations with correlation
functions or spectra, assumption of ergodicity

e inflationary perturbations can be seen as fluctuations in the cosmic
microwave background

e formation of the cosmic large-scale structure from inflationary
perturbations by gravitational instability
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repetition  (structure formati juations) linearisation nonlinearity  angular momentum stability summary

structure formation equations

cosmic structure formation

structure formation is a self gravitating, fluid mechanical
phenomenon

e continuity equation: evolution of the density field due to fluxes

0

—p +div(pd) =0 (1)

ot
e Euler equation: evolution of the velocity field due to forces

0

53 + Vo = -V 2)
e Poisson equation: potential sourced by density field

AD = 4rGp ()

e 3 quantities, 3 equations — solvable
e 2 nonlinearities: pv in continuity and oVu in Euler-equation
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viscosity and pressure

dynamics with dark matter

dark matter is collisionless (no viscosity and pressure) and
interacts gravitationally (non-saturating force)

e dark matter is collisionless — no mechanism for microscopic elastic
collisions between particles, only interaction by gravity
e derivation of the fluid mechancis equation from the
Boltzmann-equation: moments method
e continuity equation
¢ Navier-Stokes equation
e energy equation
e system of coupled differential equations, and closure relation

o effective description of collisions: viscosity and pressure, but
e relaxation of objects if there is no viscosity?
e stabilisation of objects against gravity if there is no pressure?
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repetition  (structure formati juations) linearisation nonlinearity  angular momentum stability summary

collective dynamics: dynamical friction

| 33.3 Te e .- o‘o.’ ° ‘.
0.. o ® e ....‘Q:‘E‘v—.’.
. 1ii£’._.:' . 0...

source: J. Schombert

e dynamical friction emulates viscosity: there is no microscopic
model for viscosity, but collective processes generate an effective
viscosity

e a particle moving through a cloud produces a wake
e behind the particle, there is a density enhancement
e density enhancement breaks down particle velocity

e kinetic energy of the incoming object is transformed to unordered
random motion
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Kelvin-Helmholtz instability

e shear flows become unstable if there are large perpendicular
velocity gradients

e generation of vorticity in shear flows by the Kelvin-Helmholtz
instability

e absent in the case of dark matter: flow is necessarily laminar
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repetition  (structure formati juations) linearisation nonlinearity  angular momentum stability summary

e intuitive explanation of the nonlinearity of the Navier-Stokes eqn

0 \Y%
To+ovo= L Vo +urd 4)
ot o
e vorticity equation: & = rotd
60_5 - A VAT PR P 1 -
5t A =&V - &divi +VpXVp+ uAd
N————— N—— N—— N————— N——
material derivative  tilting compression baroclinic  diffusion

5)
e generation of vorticity by
e pressure gradients non-parallel to density gradients
® viscous stresses
— not present in the case of collisionless dark matter
— gravity as a conservative force is not able to induce vorticity

e vorticity equation is a nonlinear diffusion equation, vorticity is
Varkus Pasgaefj+va?e9nt%91e Jits own induced velocity field
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repetition  structure formation equations nonlinearity  angular momentum  stability ~ summary

regimes of structure formation

look at overdensity field 6 = (0 — p)/p, with p = Q,,pc:i¢

e analytical calculations are possible in the regime of linear structure
formation, 6 < 1
— homogeneous growth, dependence on dark energy, number
density of objects

e transition to non-linear structure growth can be treated in
perturbation theory (difficult!), 6 ~ 1
— first numerical approaches (Zel'dovich approximation), directly
solvable for geometrically simple cases (spherical collapse)

e non-linear structure formation at late times, 6 > 1
— higher order perturbation theory (even more difficult), ultimately:
direct simulation with n-body codes
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linearisation: perturbation theory for 6 < 1

e move from physical to comoving frame, related by scale-factor a
e use density 6 = Ap/p and comoving velocity iZ = v/a
e linearised continuity equation:

0 .
—6+divii =0
ot

¢ linearised Euler equation: evolve momentum

0 Vo
Eﬁ-}_ ZH(KI)IZZ —a—2

e Poisson equation: generate potential

AD = 4nGpya®s

question

derive the linearised equations by subsituting a perturbative series
p = po(1 + 9) for all quantities, in the comoving frame
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repetition  structure formation equations nonlinearity  angular momentum  stability ~ summary

growth equation

e structure formation is homogeneous in the linear regime, all spatial
derivatives drop out

e combine continuity, Jeans- and Poisson-eqn. for differential
equation for the temporal evolution of §:
s 1
¥ 1(,, dInH) do _ 3QM(a)5
da?  a dlna | da 2a?

e growth function D, (a) = 6(a)/6(a = 1) (growing mode)

e position and time dependence separated: (X, a)_)= D, (a)5y(@) .
e in Fourier-space modes grows independently: §(k, a) = D.(a)dy(k)

e for standard gravity, the growth function is determined by H(a)
question
derive the growth function D, with ¢ and with a as time variables
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terms in the growth equation

~ ™

source S (a) and dissipation Q(a)

04 05 06
scale factor a

source (thin line) and dissipation (thick line)

e two terms in growth equation:
e source Q(a) = Q,(a): large Q,,(a) make the grav. fields strong
e dissipation S(a) = 3 + dln H/d In a: structures grow if their dynamical
time scale is smaller than the Hubble time scale 1/H(a)
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growth function

1

o gowthfunction D@

0 01 02 08 04 05 06 07 08 09 1
scale factor a

D. (a) for Q,, = 1 (dash-dotted), for Q5 = 0.7 (solid) and Q; = 0.7 (dashed)
e density field grows « a in Q,, = 1 universes, fasterif w <0

question

show that D, (a) = a is a solution for Q,, = 1. what would be the
solution in the radiation dominated epoch?
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nonlinear density fields

ACDM SCDM (@, = 1)
source: Virgo consortium
e dark energy influences nonlinear structure formation
e how does nonlinear structure formation change the statistics of the
density field?
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repetition  structure formation equations linearisation angular momentum  stability ~ summary

mode coupling

e linear regime structure formation: homogeneous growth
8(%,a) = D()50(X) = 8(k, @) = Dy(a)So(k) (7)

e separation fails if the growth is nonlinear, because a void can’t get
more empty than 6 = —1, but a cluster can grow to ¢ =~ 200

6(X,a) = D.(a,X)6(X) (8)

e product of two ¥-dependent quantities in real space — convolution
in Fourier space:

5(k, a) = f d*K'D,(a,k = K)o(K) (9)
e k-modes do not evolve independently: mode coupling

S

how that products of functions in real space become convolutions
in Fourier-space
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perturbation theory

e perturbative series in density field:
6@, a) = D, (@6 @ + DL (@) (@) + DY (@)@ +...  (10)

e |owest order:

- d3 > >
5O = f s Mtk = 5 PO~ ) (11)
e with mode coupling
10 > 4 (33 2
=+ (L4 9 2 (70) (12)
7 pa\q p) T\pq

e properties:
¢ time-independent, no scale py
e strongest coupling if p = ¢
e some coupling of modes g L ¢
e no coupling if p = —¢
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repetition  structure formation equations linearisation angular momentum  stability ~ summary

homogeneity, linearity and Gaussianity

homogeneity, linearity and Gaussianity

...almost the same thing in structure formation!

e linearity

e eqns can be linearised: |§] < 1

e linearisation fails: |6] ~ 1
e homogeneity

e homogeneous: §(%,a) = D,(a)6(X,a = 1)

e inhomogeneous: §(¥,a) = D, (¥, a)6(%,a = 1)
e Gaussianity (with central limit theorem)

e Gaussian amplitude distribution p(6)dé
e non-Gaussian (lognormal) distribution p(6)dd

mode coupling
easiest way to visualise: resonance phenomenon

Markus Pdssel + Bjérn Malte Schafer linear and nonlinear structure growth
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repetition structure formation equations linearisation angular momentum stability summary

nonlinearity triangle

e linearity, homogeneity and Gaussianity imply each other

e nonlinear structure formation breaks homogeneity and produces
non-Gaussian statistics

e mode coupling - can be described in perturbation theory

linearit
SF equations can b€ linearised
barrier at delta=—1 |deltaj<<1 barrier at delta=-1
homogeneity —e—cenaliniicoen g Gayssianity
position independent growth independent Fourier modes ~ Gaussian amplitude distfibution
delta(x,a) = D+(a) delta(x) delta(k,a) = D+(a) delta(k) p(delta)d delta
Markus Péssel + Bjérn Malte Schafer linear and nonlinear structure growth



repetition  structure formation equations linearisation angular momentum  stability ~ summary

link between dynamics and statistics

e nonlinear structure formation couples modes

e superposition of various k-modes (not independent anymore)
generate a non-Gaussian density field

e non-Gaussian density field:

e odd moments are not necessarily zero
e even moments are not powers of the variance

e finite correlation length: n-point correlation functions

e 3-point-function: bispectrum
e 4-point-function: trispectrum

higher order correlations quickly become unpractical, and are really
difficult to determine

linear and nonlinear structure growth
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nonlinear CDM spectrum P(k)

[
T
T
&
T
T
g
g
H
&
=
3
3

ity

e fit to numerical data, z = 9,4, 1,0, normalised on large scales
e extra power on large scales, time dependent, saturates

e on top of scaling P(k, a) « D*(a)
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repetition structure formation equations linearisation angular momentum stability summary

quantification of non-Gaussianities: bispectrum

800

1000 O .
multipole order £,
mnlfinale arder £,

e bispectrum (3-point function) quantifies nonlinearity to lowest order

e configuration dependence: compare arbitrary triangle to equilateral
triangle, keeping base fixed:

Re.(l1.6y) = 10 '3(51,52,53) (13)
6\, 02) = —5— PN

& B(t3, 63, 03)
Markus Pdssel + Bjérn Malte Schafer linear and nonlinear structure growth



repetition  structure formation equations linearisation angular momentum  stability ~ summary

n-body simulations of structure formation

e basic issue: gravity is long-ranged, for each particle the gravitational
force of all other particle needs to be summed up, complexity 7’

e algorithmic challenge to break down n?-scaling

e particle-mesh
e particle’-mesh

e tree-codes

e tree-particle mesh

Markus Pdssel + Bjérn Malte Schafer linear and nonlinear structure growth
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structure formation equations linearisation angular momentum  stability ~ summary

Zel’dovich-approximation

e evolution of perturbation in the translinear regime
e idea: follow trajectories of particles that accumulate in a region and
produce a density fluctuation
e physical position 7 (Euler) can be related to initial position ¢
(Lagrange)
2 r(t)
= — =34+D,()V¥Q (14)
e two contributions: Hubble-flow and local deviation, expressed by
displacement field ¥(q§)
e displacement field ¥ is a solution to Poisson eqn. AY = ¢
e evolution dominated by overall potential, not by self-gravity
question

can

6 become infinite in the Zel'dovich-approximation? what

happens in Nature?

Markus Pdssel + Bjérn Malte Schafer linear and nonlinear structure growth
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Zel'dovich-approximation: quick realisation

remrd e

time sequence of structure formation in a dark energy cosmology

formation of sheets and filaments

very fast computational scheme (above pic: seconds!!)

can’t use Zel'dovich approximation, if trajectories cross

no relaxation (collapsing sphere would reexpand to orginial radius)

Markus Pdssel + Bjérn Malte Schafer linear and nonlinear structure growth
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repetition structure formation equations linearisation i ity I stability summary

Zel'dovich: comparision to exact solution

comparison between Zeldovich and exact solution, source: N. Wright

e reexpanding structures, no dissipation, no formation of objects

e qualitative agreement on large scales, small densities

Markus Pdssel + Bjérn Malte Schafer linear and nonlinear structure growth
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angular momentum of galaxies

galaxy M81, HST image

e vorticity can’t be generated in inviscid fluids
e flow is laminar
e initial vorticity decreases « 1/a

Markus Pdssel + Bjérn Malte Schafer linear and nonlinear structure growth
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angular momentum: tidal shearing

Euler frame Lagrange frame

%20

e non-constant displacement mapping across protogalactic cloud
e tidal forces 9;0,'¥ set protogalactic cloud into rotation
e in addition: anisotropic deformation (not drawn!)

e gravitational collapse: non-simply connected fields

linear and nonlinear structure growth
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tidal shearing in Zel’dovich-approximation

e current paradigm: galactic haloes acquire angular momentum by
tidal shearing (White 1984)

L=pa® | Faq-axi (15)
\43
e tidal shearing can be described in Zel'dovich approximation
X(G.0) =4 - D.()V¥(G) — ¥ = -D, V¥ (16)

e 2 relevant quantities: inertia I, and shear ¥4

Ly = @*Dy€opylprPory (17)

e tidal shear ¥z = 0,05, derived from Zel'dovich displacement field
Y o @, solutionto AW =6

Markus Pdssel + Bjérn Malte Schafer linear and nonlinear structure growth
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repetition structure formation equations linearisation nonli ity :) stability summary

tidal interaction with the large-scale structure

Euler frame Lagrange frame

e dynamics described by Zel'dovich approximation (lowest order)
¢ L, = a’D.€p,l5,¥y, With inertia I and gravitational shear ¥
e define X =1V, splitup X = X* + X™:

o LaxX = % [L, ¥], misalignment between shear and inertia,
skewed eigensystems necessary for inducing rotation
o X* = % {I, ¥} causes an anisotropic deformation

Markus Pdssel + Bjérn Malte Schafer linear and nonlinear structure growth
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repetition structure formation equations linearisation nonlinearity angular momentum stability summary

gravothermal instability: thermal energy

e consider gravitationally bound system, exchanging (thermal) energy
with environment

@ cenergy is removed from a self-gravitating object, on a time-scale
tremove > dynamical time-scale #4y,

® system assumes a new equilibrium state deeper inside its own
potential well (quasi-stationary, no relaxation)

@ release of gravitational binding energy, particles speed up

@ velocity dispersion (temperature) rises

e removal of thermal energy — increase in temperature
e gravitationally bound systems have a negative specific heat

question
in what way can you get a self-gravitating system to cool down?

question
could one use such systems as an unlimited source of energy?
Markus Pdssel + Bjérn Malte Schafer linear and nonlinear structure growth
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negative specific heat: virial theorem

¢ look at the kinetic energy T = )/ m/2ul.2 for a system of n particles
oT oT
— =nmy; - Z —uv; =2T (18)

e if we introduce momenta p; = 0T /dv;:

ZT:iPivi:%Z’:]pin_ani (19)

l
with particle positions r; with #; = v;
e perform time averaging

) 1 At
w= Jin 2 [ aruo) (20)

Markus Pdssel + Bjérn Malte Schafer linear and nonlinear structure growth
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negative specific heat: virial theorem

e if ¥(¢) is the derivative of a bounded function ¥, this average
vanishes:
do ¥(Ar) - P(0)

1 At
= lim — dt — =1lim ———————~2 =0 21
W)= Jim Atfo tg = Aim —— (@1)

e the virial }}; r;p; is bounded, so its average of its derivative vanishes

e if the system is Newtonian, p; = —0®/dr;

SR
AT) = <Z r"a_ri> (22)

e if the potential is a homogeneous function of order «,
®(ar) = *O(r), one gets:

UT) = k(D) (23)

Markus Pdssel + Bjérn Malte Schafer linear and nonlinear structure growth
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repetition structure formation equations linearisation nonlinearity angular momentum stability summary

negative specific heat: virial theorem

e substituting the total energy E gives (T) + (®) = E and therefore

2 k
e for the Newtonian gravitational potential @ « 1/r the homogeneity
parameter is k = —1: 2(T) = —(®), or equivalently
(Ty=2E and (®)=-E (25)
e if one removes energy, the system would be more tightly bound and
E would be more negative

e as a consequence, the particles would need to speed up and the
temperature increases

question
imagine particles in a system would be bound by a harmonic
potential @ « 2. would this system have positive or negative

Mapﬁpe&&glc Emaalt% Schafer linear and nonlinear structure growth
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gravothermal instability: particles

globular cluster Omega Centauri, source: Loke Kun Tan

kinetic energy of a star fluctuates, can get gravitationally unbound

star leaves cluster on parabolic orbit, does not take away energy
e gravitational binding energy distributed among fewer stars

system heats up by evaporating stars, eventually disintegrates

question
when does this process stop? what’s the final state?
Markus Pdssel + Bjérn Malte Schafer linear and nonlinear structure growth
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gravothermal instability: particles

e for a gravitationally bound system, we would write E = —(®) with the
potential energy ® = GM?/R

¢ in the evaporation process, the total energy is approximately
conserved, so

dE_ 2GMdM GM*dR 2RdM _ dR

—=0=—=——-—— ——=— 26
dr R d R d  Madt d (26)
e let's assume a simple law for the mass loss:

dm M

—_— == 27

dr T 27)

which leads to a decaying exponential M(t) = My exp(—t/7)

question

can you combine these equations for a differential equation for R(¢)
and solve it? what makes it consistent with the M(r)-solution?

Markus Pdssel + Bjérn Malte Schafer linear and nonlinear structure growth
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summary

e the large-scale distribution of matter in the universe forms by
gravitational instability

e described by continuity equation, Euler-equation (dark matter is
collisionless) and Poisson equation (Newtonian gravity)

e linearisation § <« 1 — growth equation

e growth is homogeneous
e conserves all statistical properties of the field, especially Gaussianity

e nonlinear regime ¢ > 1: perturbation theory or direct simulation

e linearisation fails
e growth becomes inhomogeneous
e Gaussianity is violated by mode coupling

e galaxy rotation is explained by tidal interaction

¢ haloes form by gravitational collapse, but their stability is difficult to
understand

Markus Pdssel + Bjérn Malte Schafer linear and nonlinear structure growth
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