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repetition

• Friedmann-Lemaı̂tre cosmologies with matter and dark energy for
accelerated expansion

• thermal history of the universe explains element synthesis and the
microwave background

• inflation needed for solving the flatness and horizon-problems

• inflationary fluctuations are seed fluctuations for structure formation

• description of Gaussian, homogeneous fluctuations with correlation
functions or spectra, assumption of ergodicity

• inflationary perturbations can be seen as fluctuations in the cosmic
microwave background

• formation of the cosmic large-scale structure from inflationary
perturbations by gravitational instability
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structure formation equations

cosmic structure formation
structure formation is a self gravitating, fluid mechanical
phenomenon

• continuity equation: evolution of the density field due to fluxes

∂

∂t
ρ + div(ρ~υ) = 0 (1)

• Euler equation: evolution of the velocity field due to forces

∂

∂t
~υ + ~υ∇~υ = −∇Φ (2)

• Poisson equation: potential sourced by density field

∆Φ = 4πGρ (3)

• 3 quantities, 3 equations→ solvable

• 2 nonlinearities: ρ~υ in continuity and ~υ∇~υ in Euler-equation
linear and nonlinear structure growthMarkus Pössel + Björn Malte Schäfer
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viscosity and pressure

dynamics with dark matter
dark matter is collisionless (no viscosity and pressure) and
interacts gravitationally (non-saturating force)

• dark matter is collisionless→ no mechanism for microscopic elastic
collisions between particles, only interaction by gravity

• derivation of the fluid mechancis equation from the
Boltzmann-equation: moments method
• continuity equation
• Navier-Stokes equation
• energy equation

• system of coupled differential equations, and closure relation
• effective description of collisions: viscosity and pressure, but

• relaxation of objects if there is no viscosity?
• stabilisation of objects against gravity if there is no pressure?

• Navier-Stokes equation for inviscid fluids is called Euler-equationlinear and nonlinear structure growthMarkus Pössel + Björn Malte Schäfer
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collective dynamics: dynamical friction

source: J. Schombert

• dynamical friction emulates viscosity: there is no microscopic
model for viscosity, but collective processes generate an effective
viscosity
• a particle moving through a cloud produces a wake
• behind the particle, there is a density enhancement
• density enhancement breaks down particle velocity

• kinetic energy of the incoming object is transformed to unordered
random motion
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Kelvin-Helmholtz instability

• shear flows become unstable if there are large perpendicular
velocity gradients

• generation of vorticity in shear flows by the Kelvin-Helmholtz
instability

• absent in the case of dark matter: flow is necessarily laminar
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vorticity

• intuitive explanation of the nonlinearity of the Navier-Stokes eqn

∂

∂t
~υ + ~υ∇~υ =

∇p
ρ
− ∇Φ + µ∆~υ (4)

• vorticity equation: ~ω ≡ rot~υ

∂~ω

∂t
+ ~υ∇~ω︸       ︷︷       ︸

material derivative

= ~ω∇~υ︸︷︷︸
tilting

− ~ωdiv~υ︸︷︷︸
compression

+
1
ρ2∇p × ∇ρ︸       ︷︷       ︸
baroclinic

+ µ∆~ω︸︷︷︸
diffusion

(5)
• generation of vorticity by

• pressure gradients non-parallel to density gradients
• viscous stresses

→ not present in the case of collisionless dark matter
→ gravity as a conservative force is not able to induce vorticity

• vorticity equation is a nonlinear diffusion equation, vorticity is
advected by its own induced velocity field linear and nonlinear structure growthMarkus Pössel + Björn Malte Schäfer
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regimes of structure formation

look at overdensity field δ ≡ (ρ − ρ̄)/ρ̄, with ρ̄ = Ωmρcrit

• analytical calculations are possible in the regime of linear structure
formation, δ � 1
→ homogeneous growth, dependence on dark energy, number
density of objects

• transition to non-linear structure growth can be treated in
perturbation theory (difficult!), δ ∼ 1
→ first numerical approaches (Zel’dovich approximation), directly
solvable for geometrically simple cases (spherical collapse)

• non-linear structure formation at late times, δ > 1
→ higher order perturbation theory (even more difficult), ultimately:
direct simulation with n-body codes
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linearisation: perturbation theory for δ � 1

• move from physical to comoving frame, related by scale-factor a

• use density δ = ∆ρ/ρ and comoving velocity ~u = ~υ/a
• linearised continuity equation:

∂

∂t
δ + div~u = 0

• linearised Euler equation: evolve momentum

∂

∂t
~u + 2H(a)~u = −

∇Φ

a2

• Poisson equation: generate potential

∆Φ = 4πGρ0a2δ

question
derive the linearised equations by subsituting a perturbative series
ρ = ρ0(1 + δ) for all quantities, in the comoving frame
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growth equation

• structure formation is homogeneous in the linear regime, all spatial
derivatives drop out

• combine continuity, Jeans- and Poisson-eqn. for differential
equation for the temporal evolution of δ:

d2δ

da2 +
1
a

(
3 +

d ln H
d ln a

)
dδ
da

=
3ΩM(a)

2a2 δ (6)

• growth function D+(a) ≡ δ(a)/δ(a = 1) (growing mode)
• position and time dependence separated: δ(~x, a) = D+(a)δ0(~x)
• in Fourier-space modes grows independently: δ(~k, a) = D+(a)δ0(~k)

• for standard gravity, the growth function is determined by H(a)

question
derive the growth function D+ with t and with a as time variables
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terms in the growth equation
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source (thin line) and dissipation (thick line)

• two terms in growth equation:
• source Q(a) = Ωm(a): large Ωm(a) make the grav. fields strong
• dissipation S(a) = 3 + d ln H/d ln a: structures grow if their dynamical

time scale is smaller than the Hubble time scale 1/H(a)
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growth function
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D+(a) for Ωm = 1 (dash-dotted), for ΩΛ = 0.7 (solid) and Ωk = 0.7 (dashed)

• density field grows ∝ a in Ωm = 1 universes, faster if w < 0

question
show that D+(a) = a is a solution for Ωm = 1. what would be the
solution in the radiation dominated epoch?
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nonlinear density fields

ΛCDM SCDM (Ωm = 1)
source: Virgo consortium

• dark energy influences nonlinear structure formation

• how does nonlinear structure formation change the statistics of the
density field?
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mode coupling

• linear regime structure formation: homogeneous growth

δ(~x, a) = D+(a)δ0(~x)→ δ(~k, a) = D+(a)δ0(~k) (7)

• separation fails if the growth is nonlinear, because a void can’t get
more empty than δ = −1, but a cluster can grow to δ ' 200

δ(~x, a) = D+(a,~x)δ0(~x) (8)

• product of two ~x-dependent quantities in real space→ convolution
in Fourier space:

δ(~k, a) =

∫
d3k′D+(a,~k − ~k′)δ0(~k′) (9)

• k-modes do not evolve independently: mode coupling

s
how that products of functions in real space become convolutions
in Fourier-space
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repetition structure formation equations linearisation nonlinearity angular momentum stability summary

perturbation theory

• perturbative series in density field:

δ(~x, a) = D+(a)δ(1)(~x) + D2
+(a)δ(2)(~x) + D3

+(a)δ(3)(~x) + . . . (10)

• lowest order:

δ(2)(~k) =

∫
d3p

(2π)3 M2(~k − ~p, ~p)δ(~p)δ(|~k − ~p|) (11)

• with mode coupling

M2(~p, ~q) =
10
7

+
~p~q
pq

(
p
q

+
q
p

)
+

4
7

(
~p~q
pq

)2

(12)

• properties:
• time-independent, no scale ~p0

• strongest coupling if ~p = ~q
• some coupling of modes ~p ⊥ ~q
• no coupling if ~p = −~q
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homogeneity, linearity and Gaussianity

homogeneity, linearity and Gaussianity

...almost the same thing in structure formation!

• linearity
• eqns can be linearised: |δ| � 1
• linearisation fails: |δ| ' 1

• homogeneity
• homogeneous: δ(~x, a) = D+(a)δ(~x, a = 1)
• inhomogeneous: δ(~x, a) = D+(~x, a)δ(~x, a = 1)

• Gaussianity (with central limit theorem)
• Gaussian amplitude distribution p(δ)dδ
• non-Gaussian (lognormal) distribution p(δ)dδ

mode coupling
easiest way to visualise: resonance phenomenon

linear and nonlinear structure growthMarkus Pössel + Björn Malte Schäfer
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nonlinearity triangle

• linearity, homogeneity and Gaussianity imply each other

• nonlinear structure formation breaks homogeneity and produces
non-Gaussian statistics

• mode coupling - can be described in perturbation theory

barrier at delta=−1

linearity
SF equations can be linearised

homogeneity
position independent growth

Gaussianity
Gaussian amplitude distribution

central limit theorem

independent Fourier modes

|delta|<<1

delta(x,a) = D+(a) delta(x) delta(k,a) = D+(a) delta(k) p(delta)d delta

barrier at delta=−1
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link between dynamics and statistics

• nonlinear structure formation couples modes

• superposition of various k-modes (not independent anymore)
generate a non-Gaussian density field

• non-Gaussian density field:

• odd moments are not necessarily zero
• even moments are not powers of the variance

• finite correlation length: n-point correlation functions

• 3-point-function: bispectrum
• 4-point-function: trispectrum

higher order correlations quickly become unpractical, and are really
difficult to determine
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nonlinear CDM spectrum P(k)
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• fit to numerical data, z = 9, 4, 1, 0, normalised on large scales

• extra power on large scales, time dependent, saturates

• on top of scaling P(k, a) ∝ D2
+(a)
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quantification of non-Gaussianities: bispectrum

0
200

400
600

800
1000 0

500

1000

10
−0.8

10
−0.6

10
−0.4

10
−0.2

10
0

multipole order ℓ1
multipole order ℓ2

co
n

fi
g

u
ra

ti
o

n
d

ep
en

d
en

ce
R
ℓ 3

(ℓ
1
,ℓ

2
)

• bispectrum (3-point function) quantifies nonlinearity to lowest order

• configuration dependence: compare arbitrary triangle to equilateral
triangle, keeping base fixed:

R`3 (`1, `2) =
`1`2

`2
3

√∣∣∣∣∣B(`1, `2, `3)
B(`3, `3, `3)

∣∣∣∣∣ (13)
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n-body simulations of structure formation

• basic issue: gravity is long-ranged, for each particle the gravitational
force of all other particle needs to be summed up, complexity n2

• algorithmic challenge to break down n2-scaling
• particle-mesh
• particle3-mesh
• tree-codes
• tree-particle mesh

linear and nonlinear structure growthMarkus Pössel + Björn Malte Schäfer
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Zel’dovich-approximation

• evolution of perturbation in the translinear regime

• idea: follow trajectories of particles that accumulate in a region and
produce a density fluctuation

• physical position ~r (Euler) can be related to initial position ~q
(Lagrange)

~x =
~r(t)

a
= ~q + D+(t)∇Ψ(~q) (14)

• two contributions: Hubble-flow and local deviation, expressed by
displacement field Ψ(~q)

• displacement field Ψ is a solution to Poisson eqn. ∆Ψ = δ

• evolution dominated by overall potential, not by self-gravity

question
can δ become infinite in the Zel’dovich-approximation? what
happens in Nature?
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Zel’dovich-approximation: quick realisation

time sequence of structure formation in a dark energy cosmology

• formation of sheets and filaments

• very fast computational scheme (above pic: seconds!!)

• can’t use Zel’dovich approximation, if trajectories cross

• no relaxation (collapsing sphere would reexpand to orginial radius)

linear and nonlinear structure growthMarkus Pössel + Björn Malte Schäfer
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Zel’dovich: comparision to exact solution

comparison between Zeldovich and exact solution, source: N. Wright

• reexpanding structures, no dissipation, no formation of objects

• qualitative agreement on large scales, small densities

linear and nonlinear structure growthMarkus Pössel + Björn Malte Schäfer
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angular momentum of galaxies

galaxy M81, HST image

• vorticity can’t be generated in inviscid fluids

• flow is laminar

• initial vorticity decreases ∝ 1/a
linear and nonlinear structure growthMarkus Pössel + Björn Malte Schäfer
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angular momentum: tidal shearing

Lagrange frameEuler frame

• non-constant displacement mapping across protogalactic cloud

• tidal forces ∂i∂jΨ set protogalactic cloud into rotation

• in addition: anisotropic deformation (not drawn!)

• gravitational collapse: non-simply connected fields

linear and nonlinear structure growthMarkus Pössel + Björn Malte Schäfer
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tidal shearing in Zel’dovich-approximation

• current paradigm: galactic haloes acquire angular momentum by
tidal shearing (White 1984)

~L ' ρ0a5
∫

VL

d3q(~q − q̄) × ~̇x (15)

• tidal shearing can be described in Zel’dovich approximation

~x(~q, t) = ~q − D+(t)∇Ψ(~q)→ ~̇x = −Ḋ+∇Ψ (16)

• 2 relevant quantities: inertia Iαβ and shear Ψαβ

Lα = a2Ḋ+εαβγIβσΨσγ (17)

• tidal shear Ψαβ = ∂α∂βΨ, derived from Zel’dovich displacement field
Ψ ∝ Φ, solution to ∆Ψ = δ

linear and nonlinear structure growthMarkus Pössel + Björn Malte Schäfer



repetition structure formation equations linearisation nonlinearity angular momentum stability summary

tidal interaction with the large-scale structure

Lagrange frameEuler frame

• dynamics described by Zel’dovich approximation (lowest order)

• Lα = a2Ḋ+εαβγIβσΨσγ, with inertia I and gravitational shear Ψ

• define X = IΨ, split up X = X+ + X−:
• L ∝ X− = 1

2 [I,Ψ], misalignment between shear and inertia,
skewed eigensystems necessary for inducing rotation

• X+ = 1
2 {I,Ψ} causes an anisotropic deformation

linear and nonlinear structure growthMarkus Pössel + Björn Malte Schäfer
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gravothermal instability: thermal energy

• consider gravitationally bound system, exchanging (thermal) energy
with environment

1 energy is removed from a self-gravitating object, on a time-scale
tremove � dynamical time-scale tdyn

2 system assumes a new equilibrium state deeper inside its own
potential well (quasi-stationary, no relaxation)

3 release of gravitational binding energy, particles speed up
4 velocity dispersion (temperature) rises

• removal of thermal energy→ increase in temperature

• gravitationally bound systems have a negative specific heat

question
in what way can you get a self-gravitating system to cool down?

question
could one use such systems as an unlimited source of energy?
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negative specific heat: virial theorem

• look at the kinetic energy T =
∑n

i m/2υ2
i for a system of n particles

∂T
∂υi

= mυi →

n∑
i

∂T
∂υi

υi = 2T (18)

• if we introduce momenta pi = ∂T/∂υi:

2T =

n∑
i

piυi =
d
dt

n∑
i

piri −
∑

i

riṗi (19)

with particle positions ri with ṙi = υi

• perform time averaging

〈ψ〉 ≡ lim
∆t→∞

1
∆t

∫ ∆t

0
dt ψ(t) (20)

linear and nonlinear structure growthMarkus Pössel + Björn Malte Schäfer



repetition structure formation equations linearisation nonlinearity angular momentum stability summary

negative specific heat: virial theorem

• if ψ(t) is the derivative of a bounded function Ψ, this average
vanishes:

〈ψ〉 = lim
∆t→∞

1
∆t

∫ ∆t

0
dt

dΦ

dt
= lim

∆t→∞

Ψ(∆t) − Ψ(0)
∆t

= 0 (21)

• the virial
∑

i ripi is bounded, so its average of its derivative vanishes

• if the system is Newtonian, ṗi = −∂Φ/∂ri

2〈T〉 =

〈 n∑
i

ri
∂Φ

∂ri

〉
(22)

• if the potential is a homogeneous function of order k,
Φ(αr) = αkΦ(r), one gets:

2〈T〉 = k〈Φ〉 (23)
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negative specific heat: virial theorem

• substituting the total energy E gives 〈T〉 + 〈Φ〉 = E and therefore

〈T〉 =
2

k + 2
E and 〈Φ〉 =

k
k + 2

E (24)

• for the Newtonian gravitational potential Φ ∝ 1/r the homogeneity
parameter is k = −1: 2〈T〉 = −〈Φ〉, or equivalently

〈T〉 = 2E and 〈Φ〉 = −E (25)

• if one removes energy, the system would be more tightly bound and
E would be more negative

• as a consequence, the particles would need to speed up and the
temperature increases

question
imagine particles in a system would be bound by a harmonic
potential Φ ∝ r2. would this system have positive or negative
specific heat? linear and nonlinear structure growthMarkus Pössel + Björn Malte Schäfer
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gravothermal instability: particles

globular cluster Omega Centauri, source: Loke Kun Tan

• kinetic energy of a star fluctuates, can get gravitationally unbound

• star leaves cluster on parabolic orbit, does not take away energy

• gravitational binding energy distributed among fewer stars

• system heats up by evaporating stars, eventually disintegrates

question
when does this process stop? what’s the final state?
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gravothermal instability: particles

• for a gravitationally bound system, we would write E = −〈Φ〉 with the
potential energy Φ = GM2/R

• in the evaporation process, the total energy is approximately
conserved, so

dE
dt

= 0 =
2GM

R
dM
dt
−

GM2

R2

dR
dt

→
2R
M

dM
dt

=
dR
dt

(26)

• let’s assume a simple law for the mass loss:

dM
dt

= −
M
τ

(27)

which leads to a decaying exponential M(t) = M0 exp(−t/τ)

question
can you combine these equations for a differential equation for R(t)
and solve it? what makes it consistent with the M(t)-solution?
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summary

• the large-scale distribution of matter in the universe forms by
gravitational instability

• described by continuity equation, Euler-equation (dark matter is
collisionless) and Poisson equation (Newtonian gravity)

• linearisation δ � 1→ growth equation
• growth is homogeneous
• conserves all statistical properties of the field, especially Gaussianity

• nonlinear regime δ � 1: perturbation theory or direct simulation
• linearisation fails
• growth becomes inhomogeneous
• Gaussianity is violated by mode coupling

• galaxy rotation is explained by tidal interaction

• haloes form by gravitational collapse, but their stability is difficult to
understand
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