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@ Preparation for cosmological model-building

@ Homogeneous and isotropic universes

@ FRW expansion

@ Geometry and motion in an FRW-universe

@ The evolution of the scale factor: cosmic dynamics

@ Expansion effects and horizons
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Preparation for cosmological model-building

One key property of the universe:

e Homogeneous and isotropic on large scales (> 100 Mpc)

e Average density rather small

Make this the first axiom of cosmological model-building:

Cosmological principle

On large scales, on average, the universe is homogeneous and
isotropic
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Cosmological model-building: strategy

Two-step model-building strategy guided by the cosmological
principle:

© Build idealized exactly homogeneous and isotropic models:
Friedmann-Lemaitre-Robertson-Walker, FLRW (exact family of
solutions; this lecture)

@® Add inhomogeneities on smaller scales as perturbations (BMS’s
lecture)
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Homogeneous and isotropic universes

Naively: A homogeneous universe is the same everywhere (in
particular: density p =const.).

But: general relativity is a covariant theory — all coordinate
systems admissible!

Relativistic definition: There exists a coordinate choice so that, at
each fixed coordinate time, space is homogeneous (foliation).

(More rigorous definition: = isometries and Killing vectors, way
beyond scope of this course.)
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Choice of time coordinate

Assume there is a cosmic substrate — matter (think: galaxy-size
dust particles) that, for a given choice of time and space
coordinates, is at rest and evenly distributed.

Cosmic time: time coordinate for which there can be explicit
isotropy and homogeneity (this fixes simultaneity); time differences
at the same point in space are proper time differences for
substrate particles.

In consequence:

ds? = —dt? + (spatial part of metric).

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Choice of spatial metric: Euclidean

Rigorous route: Killing vectors & form invariance, cf. sec. 13 in
Weinberg (1972)
Simpler question: What can we think of?
Euclidean space:
ds? = dx? + dy? + dz? = dx2.

dx

dy |=dx"-dx

dz

...this is invariant under translations, since d(X + &) = dx and
under rotation, since X — MX with M € SO(3) means

ds? = (dx, dy,dz) -

d(M%)T - d(MX) = dX™ - MT - M -dx = dX" - dX.

Markus Pdssel & Bjoérn Malte Schafer Expanding Universes
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Choice of spatial metric: Spherical

What other homogeneous, isotropic spaces are there?

Think spherical; a spherical surface S™~' embedded in R" is
defined as the union of all points with n-dimensional coordinates x;
where

n

2 _ 2
R
i=1

with R the radius of the sphere. Two-sphere S?: ordinary spherical
surface in space.

At least locally: Use n — 1 of the coordinates as coordinates on the
surface, X; one coordinate as embedding coordinate, &, then

ds? = dxX? + d&® where &2+ X2 = R,

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Choice of spatial metric: Spherical

ds? = dx? + d&® where &2+ X2 = R?

is invariant under rotations M € SO(4), which include homogeneity
(any point can be rotated into any other point) and isotropy (any
tangent vector can be rotated in any direction).

Easiest to see for S? € R3 : For each point P, one rotation (through
embedding centerpoint and P) that will rotate space around P
(isotropy), and two rotations that will shift the point into any given
other point (homogeneity).

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Choice of spatial metric: Hyperbolical

ds? = dX? - d&? where ¢2-X? = R?.

Higher-dimensional analogue of a saddle; invariant under
R € SO(3,1).

This is the Lorentz group: SO(3) rotations (isotropy around each
given point) and 3 Lorentz boosts that take the point into an
arbitrary other point (homogeneity).
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Unifying the spherical and hyperbolical spaces

Rescale X — X/R and ¢ — &/R:
ds? = R? [d)?2 + d§2] where &2 +xX2=1.
From the constraint equation,
d(£% + X%) = 0 = 2(&d¢ + X - dx)

relates the differentials. Substitute in metric to get unconstrained

version:
> 2\2
X -dX
as? = A2 |age & ) 93 :
1FX
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Unifying the spherical and hyperbolical spaces

Introduce parameter K = +1,0, —1 to write all three metrics in the

same form:
=2 2\2
X - dX
as? = B2 |ax2 4 kX2
1 - KX?2
where
+1 spherical space
K= 0 Euclidean space
—1 hyperbolical space
Markus Pdssel & Bjoérn Malte Schafer Expanding Universes
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Spherical coordinates

Introduce spherical coordinates r, 9, ¢ via

= r-sinf-cos¢
= r-sin@-sing
Z = r-cosé

(in the usual way — think about 6 as latitude and ¢ as longitude).
Direct calculation shows:

dxX? = dr? + r?(d6? + sin® 0 d¢?) = dr® 4 r2dQ.
Also, X° = r° and X - dx = rdr.
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Spherical coordinates

Re-write the metric accordingly:

dr?
1 — Kr2

ds® = RZ( + erQ).

This is nice and simple!

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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A caveat: global vs. local

The metric

dr?

_ 2
_1—Kr2+r dQ.

ds?

describes space locally.

Globally, there is topology to consider
— e.g. a flat metric can belong to
infinite Euclidean space, but also, say,
to a torus (a patch of Euclidean space
with certain identifications).

= Later on, we will learn of a possibility how a finite universe might
be identified (cosmic background radiation)
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A caveat: global vs. local

e K = 0: 18 topologically different forms of space. Some inifinite,
some finite.

e K = +1:inifinitely many topologically different forms. All are finite.

e K = —1:infinitely many topologically different forms of space. Some
inifinite, some finite.
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Back to spacetime

R can only depend on t (homogeneity): R — a(t).

2

1 — Kr2

(X - dX)?
1-Kx2

ds? = —dt?+a(t)? [d)?z +K } = —dt2+a(t)2[ + rzdﬂ]

a(t) is the cosmic scale factor

This is the Friedmann-Robertson-Walker-Metric — unique
description for homogeneous and isotropic spaces.
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Note: We haven’t invoked Einstein’s equations yet! What we derive
now follows from symmetry!

dr? o
ds? = dt? + a(t)? [m - rzdﬂ} = —dt? + a(t)?g(X);dx’ dx!

means that for any two spatial vectors v* = (0, i), w* = (0, W) we
have

g(v.w) = a(t)? §(v. )

= distance ratios and angles preserved over time!
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The role of the scale factor
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The role of the scale factor
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Distances between galaxies

Consider galaxies in the Hubble flow:

‘ d(to)
-~ © 9

All distances change as d(t) = :L -d(to).
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Distances between galaxies

Consider galaxies in the Hubble flow:

All distances change as d(t) = :L -d(to).
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Taylor expansion of the scale factor

Generic Taylor expansion:

. 1.
a(t) = a(to) + a(to)(t — to) + 5&- (t - )%+ ...
Re-define the expansion parameters by introducing two functions

H(t) = % and q(t) = _3‘(;();21‘)

a

~—

and corresponding constants

Ho = H(t) and qo = q(lo)

’
a(t) =ap|1+ (t—to)Ho - EqOHg(t — )% +...

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Some nomenclature and values 1/2

fp is the standard symbol for the present time. If coordinates are
chosen so cosmic time t = 0 denotes the time of the big bang
(phase), then 1y is the age of the universe. Sometimes, the age of
the universe is denoted by 7.

H(t) is the Hubble parameter (sometimes misleadingly Hubble
constant)

Ho = H(t) is the Hubble constant. Current values are (cf. later
lecture) around

km/s

Ho=7 .
0 OMpc

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Some nomenclature and values 2/2

Sometimes, the Hubble constant is written as

km/s

Ho=h-100
0 Mpc

to keep ones options open with h the dimensionless Hubble
constant.

The inverse of the Hubble constant is the Hubble time (cf. the
linear case and the models later on).
1

km/s
h- 100M—pc

~h'.10"0 a.

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Matter at rest in an FRW universe

Our assumption: Floating substrate of particles. Is this consistent?
Can particles be at rest?

We need the geodetic equations to tell us:
XK 4T, X" X0 =0
Particle at rest has four-velocity:
x°=1 and x' =0.

Does this solve the geodetic equation? = Exercise

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Light in an FRW universe

For light, often easier to use ds? = 0 instead of the geodetic
equation.

Also: use symmetries! Move origin of your coordinate system
wherever convenient. Look only at radial movement.

ds? = —dt? + a(t)? r?dQ
+all) [1 - Kr? *
becomes Nd
a r
T UL
Vi1 - Kr2

Markus Pdssel & Bjorn Malte Schafer Expanding Universes




Preparation H ous worlds FRW exf ion Cosmic dy i Expansion/horizons

Light in an FRW universe

Integrate to obtain

~ff; a) ~ "~ J, W
Plus/minus: light moving towards us or away from us.
The key to astronomical observations in an FRW universe:
b dt noodr
fn a(t) fo Vi-Ki2
where, by convention, tj is present time, t; < t; emission time of

particle, ry (constant) coordinate value for distant source.
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Light signals chasing each other 1/2

Imagine two signals leaving a distant galaxy at r = ry at
consecutive times t; and t; + 6y, arriving at ty and éfy. Then

o dt " dr
fn E:fo e
ol ¢ nooodr
f+ ﬁ:fo Vi - K2

fo+0ty dt t1+0t dt
[t
t a(t) Jy a(t)

and

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Light signals chasing each other 2/2

For small 6t,

SO in our case
oty ot

a(ty) a(t)
Signals could be anything — in particular: consecutive crests (or
troughs) of light waves, f o« 1/6t:

fo a(t Ao a(to
— = Q,wavelengths change as — = ( ).
o a(b) A1 a(t)
Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Frequency shift by expansion

Redshift defined as

_ /10—/11 _ a(to) 1
A4 a(ty)
or (t)
allo
14z=
a(ty)

For co-moving galaxies: z is directly related to ri. For monotonous
a(t): distance measure.

Relation depends on dynamics = later!

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Cosmological redshift

Wavelength scaling with scale factor:

wavelength

Redshift for a(ty) > a(t;); blueshift for a(ty) < a(t;)

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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For “nearby” galaxies...

... use the Taylor expansion
a(t) = a(to)[1 + Ho(t — to) + O((t - 1)?)]:

1 a(t1)
1-zx = ~ 14+ Hy(t; — {
157 alp) | T Helti—h)

or

zZ= Ho(to - t1) X Hod
for small z, small ty — 1.

This is Hubble’s law.
Originally discovered by Alexander Friedmann (cf. Stigler’s law).

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Pedestrian derivation of Hubble’s law and redshift

For scale factor expansion, d(t) = a(t)/a(ty) - d(f):
“Instantaneous speed” of a galaxy

a(t
v(t) = S = HO d(D) ~ Ho 1)
Classical (moving-source) Doppler effect:
z=v
in other words:
zZ = Ho d
Markus Pdssel & Bjorn Malte Schafer Expanding Universes



Preparation H ous worlds FRW exf ion Cosmic dy i Expansion/horizons
Moving galaxies?

.. .80 are galaxies really moving with v = Hy d?

Exact form for redshift

_a(b)
N a(t1)

shows that it’s not about motion — it’s about what happens to the
light on its way!

Would v > ¢ be a problem? (For Hy = (70km/s)/Mpc) from 4.3
Gpc onwards.)

142z

Remember the equivalence principle: SR does not care about
global GR effects, as long as locally all is well.

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Changing redshifts

z depends on the observing time, as well! For one and the same
object (ry fixed), and evaluated at fy:

dz i [a(to)} _ a(ty) B a(to)é(ﬁ)di

dty  dipla(ty)]  a(t)  a(t)? dt’
But
dy 1
dty 14z
(that was the redshift argument). Insert Hubble function:
dz
H(t) = Ho(1 +2) - —.
dfy

Measure the change in z, and you can reconstruct the past!

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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The evolution of the scale factor

Up to now, all our conclusions drawn from metric — derived by
symmetry.

To find the explicit form of a(t), we need Einstein’s equations,
Gy = 87G Ty

— in particular: we need to assume a (homogeneous, isotropic...)
stress-energy tensor T,,. Choose the perfect fluid,

™ = (o +p) v'u" + pg"”

(where we have generalized n — g), then implement isotropy:
u" = (1,0) — the substrate (gas, ...) is, on average, at rest in the
cosmic reference frame.

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Solving Einstein’s equations for FRW

00 component of Einstein’s eq.:

a2+ K

332

-N=8rGp

i0 components vanish. ijj components give

.. -5
a a K
2— + j;
a a

-N=-8rGp

These are the Friedmann equations. Their solutions are the
Friedmann-Lemaitre-Robertson-Walker (FLRW) universes.

(And recall that pp = —pa = A/87G.)

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Re-casting the Friedmann equations

a+ K N 8rGp

a2 3 3

andfora # 0
(by differentiating the above and inserting the ij-equation)

p=-33(p+ p) = ~8H(1)(o + p).

— this is nothing new: energy conservation for the ideal fluid
stress-energy tensor in FRW spaces! = Exercise

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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The physics behind the Friedmann equations

Multiply

, a
p=-3-(p+p)
a
by a® and integrate:
d, ., da®
—(pa = —o.
GFPa) P

The volume of asmallball0 <r <r; is

— [[] orGwgw ardsas = o v(r).

Using this, rewrite
d dv
— =0.
GPV) Py

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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The physics behind the Friedmann equations

d dv

d_t(PV) TP T 0.

but p is energy density — pV = U is the system’s energy!
= dU=-pdV
— change in energy is the “expansion work”.

If p = 0 (dust universe), dU = 0, so mass is conserved!

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Physics behind the Friedmann: deceleration

Recombine Friedmann equations to give equation for a:

a 4rG

__2¥ 3
. 3 (0 +3p)

Almost Newtonian — but in general relativity, pressure is a source
of gravity, as well! (E.qg. stellar collapse.)

This leads to an expression for the deceleration parameter:

dnG

3 ——(po + 3po)

Qo =

(with pg and pg the present density/pressure).

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Newtonian analogy

Using purely Newtonian reasoning, one can derive the Friedmann
equations for dust for K = 0.

In that derivation, all the dust particles have started with initial

velocities just right for scale-factor expansion to occur. Mass is
conserved. The mutual gravitational attraction slows down the

expansion.

Details = Exercise

Expanding Universes
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Different equations of state

Now, assume equation of state p = wp. Then

_ a
p==3_(p+p)

becomes ] _
a
Lo 31 +w)2
P a
which is readily integrated to
o~ a~30+w),

This describes how the cosmic content is diluted by expansion.

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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How does density change with the scale factor?

Earlier on, we had looked a three different equations of state
p = wp:

@Dustw=0 = p~1/a°

® Radiation:w=1/3 = p~1/a*

@ Scalar field/dark energy: w = —1 p =const.

Whenever these are the only important components, a universe
can have different phases — depending on size, different
components will dominate.

Expanding Universes
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Different eras depending on the scale factor

1021 |-

10|

B

Dust

Density p

B

Dark energy
107F Radiation

10-14 L L L i L L L
107% 1075 10* 10° 102 107" 10° 10! 10?
Scale factor a

Two caveats:

e This says little about evolution — some values of a might not even
be reached

¢ In reality, matter will change — particles might start as dust
(non-relativistic) and, at smaller a, end up at high energies and thus
as radiation (relativistic particles)

Expanding Universes
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For small a: Radiation dominates!

a+K A _ 8nGp
a2 3 3
we can rewrite, using the scale-dependence of different
components, as

. 1 8rG a2 a ag\2
oo S ) o

3 3 a a

with pp (or) the matter (radiation) density at t = .

As we go to smaller and smaller a (as in going into our own
universe’s past), curvature, A and matter (dust) become ever less
important. Only radiation (including relativistic particles) matters.

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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For small a: Radiation dominates!

Rewrite Friedmann equation as

42 87erRa§ (@)2
N 3 al’

Solve for a(t) as
a(t) o« Vt
where a(0) = 0.
This will be the basis of all our models of the early universe.

Convenient: Parameters decouple! Some important in the early
universe, some only later!

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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The initial singularity

Combine 3 éz;gK ~\=8rGpand 22 &K _ A — _8rGp to yield

a2

32 = —47G(p + 3p) + A.

Shows that, for universes where A does not dominate, a/a < 0:

Initial singularity — special case of Hawking-Penrose theorems

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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If a universe becomes large, A dominates

102 [
101
a
107]
-‘E Dust
5
T
Dark energy
107} -
Radiation
10-14 I I I I I I I
107° 105 107* 10 102 10" 10° 10" 10?

Scale factor a

Remember the deceleration parameter:

4G
Q=3 ——(po0 + 3po)-

Occasional misunderstanding: “Dark energy is negative, and acts
like negative mass” — no: what accelerates the expansion is the
negative pressure, pn = —pa. It dominates because of the factor 3!

Expanding Universes
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Flatness problem 1/2

Once more

a?+K 8rGp
a2 3
(with A included in p). Define time-dependent critical density

2
pe(t) = 3:;(2

and re-write
3K 1

p(t) = pe(t) = 87G a(1)2

and with Q(t) = p(t)/pe(t) as

(1 - %)p(t)a2 = %

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Flatness problem 2/2

(1 -~ ﬁ)p(t)az = %.

if identically zero, K = 0, then Q(t) = 1.

But physics is rarely that exact (except if there’s a mechanism for
it). What if geometry is close to Euclidean, but not exactly
Euclidean?

p increases faster than a® decreases as we go to earlier times =
deviation of ©(t) must have been much smaller in the past than
presently — finetuning problem known as flatness problem.

(see later: inflationary models)

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Universes with dust and A

For the moment, let us concentrate on universes with negligible
radiation (appropriate for the present state of our own universe).

Continuity equation shows that
pa3 = const.,

so the Friedmann equation for 42 becomes

where

Expanding Universes
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The family of Friedmann solutions

. C Na?

2

-2+ K
(a) PR

e Eq. has a unique solution if we specify parameter values C, A, K,
the initial value a(ty) at some time ty, and the sign of a(f).

e Symmetries: t — —t and t-translations. We will focus on expanding
solutions (t — —t would then give a collapsing solution) and, where
possible, choose a =0att = 0.

e a = 0 is a singularity (eq. “blows up”). Hence, no solution will have
regions of both positive and negative a. We restrict our analysis to
positive a.

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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The trivial static solution

Trivially: C = A = K = 0 and a =const. is Minkowski spacetime.

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Static solution

Other a(t) =const. solutions? Problem: this means a(t) = 0, so we
need to get back to the original equations (setting p = 0 for dust)

3 -A=0.

2 K . K
& _A=82Gp and 22 +a;r
These hold for a(t) = 0 if

K
— =N =4nGCp.
Physical condition p > 0 means K = +1.

This is the Einstein Universe (Einstein 1917 — birth of the
cosmological constant; static, finite in size). But: unstable!
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Empty solutions

p = 0 or, alternatively “gravity switched off”, G = 0:
limiting cases or scalar-field universes.

Key equation (separation of variables):

da
fo-f 5
A 2
B -K
Rescaling a, some cases (where the square root is real) can
readily be integrated.
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Empty solutions

AN=0, K=0 AN>0, K=0 A>0, K=1
Empty static de Sitter (dS)
a = & cosh(t/
a = const. a = exp(t/é
Minkowski de Sitter
AN=0, K=-1 AN<0, K=-1 A>0, K=-1

Milne

a = ¢ sin(t/€) a = ¢ sinh(t/€)

Milne AdS

where & = V|3/A|

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
I



Preparation H ous worlds FRW expansion  Geometry & i Expansion/horizons

de Sitter space

a = exp(t/€)

A

Today, interesting for two reasons:

where £ = v3/A

e Asymptotic form for models with A > 0 that expand indefinitely

e Inflationary phase

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Models without A

Astronomers took only these models seriously before 1998.

) C

2
=—-K

(8 =2

Three cases:

e K = 0 Einstein-de Sitter universe

] K = 1
e K=-1
Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Einstein-de Sitter universe, A = 0,k =0

This means a(t;) = 0 at

2
ti=1o— §H_1,

in other words: the age of the universe is

2
= —H,".
T 3 0

Choose new time coordinate t — t; and rewrite:

a(t) = ap (EHOt)m :

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Models without A, but K = +1

Introduce new variable: u(t) = +/a(t)/C. In this way, one can solve
K=+1: t= C[ sin"'(va/C) - \/a/C—(a/C)Z]
K=-1: t=C|-sinh™(Va/C)+ +a/C + (a/C)?|

Parametric solution with new parameter y and

sin?(y/2) for K = +1
| sinh?(y/2) for K = —1

a=3C-(1-cosy), t=3C-(x-siny)
=-1: a=1C-(coshy—1), t=3C-(sinhy-yx)

Expanding Universes
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All models without A

Plot the different solutions for A = 0:

K = -1

scale factor a

cosmic time t Re-collapsing
(K = +1), borderline (K = 0) and expanding (K = 1).
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The critical density

Evaluate the Friedmann equation

a’>+ K
a2

3 - N=8rGp

at the present time f, absorbing A into p, to obtain
|- 8nG K
320 Bk’
Where pg = p(). The expression

_ 8H;
Pco = 871G

is called the critical density.
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The critical density

Using the critical density, rewrite the present-time Friedmann

equation as
K

ang'
This equation links the present energy (mass) density pg of the

universe with the Hubble constant Hy (disguised as po) and the
geometry K:

po/pco =1+

po>pco & K=-+1 spherical space
po=pco © K=0 Euclidean space
po<pco <© K=-1 hyperbolical space
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Misconception about critical density and geometry

po>pco  © spherical, finite, cosmos will collapse
po=pco < Euclidean, infinite, cosmos will keep expanding
po <pco < hyperbolical, infinite, cosmos will keep expanding

Synonyms: finite = “closed universe”, infinite = “open universe”.

e |ocal geometry does not control topology!

e Direct correspondence with collapse or not only for A = 0!
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FLRW model with K =0, A >0

This is the special case that is probably our own universe:

scale factor a

cosmic time t

Explicit solution = Exercise
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General considerations for FLRW models

Rescale all present densities in terms of the present critical
density, and re-scale K accordingly:

Qr = pa(to)/pco, v = pm(to)/pcos
Qr = pr(to)/pco, k= —K/(aoHo)?.

Re-write the present-day Friedmann equation as
Qn +Qum +Qr + Qx = 1.

This is how densities is linked with spatial geometry.

Expanding Universes
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General considerations for FLRW models

Scaling behaviour of the different densities means that

3H2 ao 3 aop 4
= Qul—= Qrl|—= Qnl.
0= 5 G{ w(at) o) o
Substitute back into the Friedmann equation and substitute
x(t) = a(t)/ap = 1/(1 + z) to obtain

dx
Hqy x \/Q/\ + QKX_2 + QMX_3 4 Qg X_4.

dt =

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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The age of the universe in FLRW models

In the previous models, we defined t = 0 by a(0) = 0 [initial
singularity]. This corresponds to z — oo or x = 0. With this zero
point, emission time tg(z) of light reaching us with redshift z:

1 1/(1+Z) dx

tE(Z)

_HO 0 X\/Q/\—{—QKX_Z—FQMX_S—G—QRX_A"

Special case z = 0 corresponds to the present time — gives the
age of the universe 7,

1 ! dx
T=— .
Ho Jo x \/QA+QKX_2+QMX_3+QRX_4
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The acceleration parameter q

Present pressure:

3H2

po = ( —Qp + QR)

inserting in
4rG
Q=3 ——(po + 3po),

we find that ’

Qo = E(QM - 2Qp + ZQR).
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The fate of the universe

Rewrite

a+K A _ 87Gp
a2 3 3
as

a2 = (H0a0)2 [Q/\X2 + Q/\/]X_1 + Q[:;X_2 + QK]

where x = a/ag. Forget about Qg.

If we want a re-collapse, we must have a = 0 at some time, in
other words:
Q/\X3 + Qux + Qxx = 0.

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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The fate of the universe

Discussion of
Q/\X3 + Qux + Qxx =0

We know that, for x = 1, this expression is +1

For Qa < 0, for sufficiently large u, the expression will become
negative = must have a zero

For Qx = 0, we know recollapse for Qy, > 1, requiring K = +1

For QA > 0, recollapse if Qk sufficiently negative (again, K = +1).

Markus Pdssel & Bjorn Malte Schafer Expanding Universes
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Overview of FLRW solutions

R R R
1
k=-1
t t t
0 i) i)
f R Einstein— R
de Sitter
i
k=0
t t
0 (i) {ii) t
I A>A, A=A,
R R R R
{iic) Eddington—
Lemaitre
Lemaitre lia) Einstein
k=+1 o
t t t t t
0 (i) (i) [ 0

Image from: d’Inverno, Introducing Einstein’s Relativity, ch. 22.3
Expanding Universes
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Steady State Cosmology

Of historical interest — serious contender 1948 until the 1950s or
thereabouts. Invented by Hermann Bondi, Fred Hoyle, Thomas
Gold.

Perfect cosmological principle: On average, the universe is
isotropic, and spacetime is homogeneous (that is, there is no
change over time).

Expansion of the de Sitter type:

a = exp(Hot)

With a continuous creation process of new particles, so that the
“steady state” can be maintained.
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Local effects of expansion?

Does expansion have an effect locally? Do atoms, planetary orbits,
galaxies expand? cf. Giulini, arXiv:1306.0374v1

Overall: Average density means no net force on, say, galaxies =
expansion on largest scales. But what about bound systems?

Pseudo-Newtonian picture: The different inertial frames are
“moving away” from each other by the expansion,

. 3
)_() = —)? =~ —qOH(Z))_()
a

gives additional term in Newton’s equations,
. a,
m(x - =X) = F.
(k= =%)

Only a matters, not a! Not some “friction force” pulling everything
along with expansion!
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Expansion and the Coulomb potential 1/3

Setting up a modified Coulomb potential (electromagnetism,
gravity): Energy and angular momentum

1. .
§r2 +U(r)=E, rP¢=1L,

with the effective potential

2
(r) = L E 1 Ar?,
2re r 2
where
c { GM  gravitational field
— Qe . .
T.m ©lectric field

and A = _qOHO-
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P

Expansion and the Coulomb potential 2/3

Critical radius at

|
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Expansion and the Coulomb potential 3/3

(

() 30AU electrostatic

|§

) 108pc gravity
rC 1

@O IS

means that:

e for a hydrogen atom, instead of the Sun, the electron would have to
be near Pluto

e for the Sun, planets would need to be far beyond the neighbouring
stars

e for a galaxy at 10" Mo, next galaxy beyond 1 Mpc

Recall g = 4”6 2 (po + 3pg). — for ordinary Dark Energy,

densﬂy/pressure are constant. If those evolve, as in some
quintessence models, there could be a “big rip”!
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Causal structure of spacetime: Which parts are accessible? Which
are inaccessible?

Most prominent example: Black holes with their event horizon —
what’s behind the horizon cannot communicate with the outside.
Two varieties: particle horizon and event horizon.
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Particle horizons

In a universe with finite age, the observable universe is finite, as
well.

Re-writing the FRW metric once more, using ds® = 0 to describe
light reaching us at the present time, ty, from some distance r.
Light with ry,.x has been travelling since the big bang (t = 0):

fl‘o dr B frmax dr’

o a(t’) 0o VI—Kr2

But we do not even need to solve for ry.x, since what we're really
interested in is the proper distance:

art (t)—a(t)frmax d —a(t)ft0 o
particle\l0) = 0 0 m_ 0 0 a(t’)'
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P

Particle horizons

d to dt/
icle(fo) = alt —
partlcle( 0) ( O) L a(t’)

for special cases:
Radiation dominated universe: a(t) ~ Vt, so Hy = 1/(2ty), and

1
dparticle(tO) = 2ILO = ﬁo

Matter dominated universe: a(t) ~ Vt, so Hy = 1/(2t), and

2
dparticle(tO) = 3ILO = —.

Ho
One possible definition for the observable universe!

de Sitter universe: infinite!
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Event horizons

Which events happening at present will we see? Which not?

Same basic derivation from FRW metric:

ftmax dt’ _ frmax(to) dr’
fo a(t/) 0 Vi —KI”2‘

tmax is infinite for infinitely expanding universes, finite for
re-collapsing ones. Calculating proper distances again eliminates
the need to solve for (1)

Tmax(tg) dar’ fmax dt’
Gevent(f0) = (o) f L R
0 V1 — Kr2 fo a(tl)
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Event horizons

Most interesting case: our own universe. For large times (follows
from explicit solution in exercise)

a(t) ~ exp(VQa Hot),
which is dS with H = +Q Hp. Calculate directly that

1 1
o )= — = —.
event( 0) H \/Q_/\ Ho
For present values of the Hubble constant, that amounts to 8 billion
light-years.
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What are the next steps?

¢ Inventory of observational consequences
e How to fix the parameters, test the models
e Separate treatment for early (radiation-dominated) universe
e So far, everything homogeneous: inhomogeneities!
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