Astronomy from 4 Perspectives

Bi-national Heraeus Sumer School Series for Teacher Students and Teachers

I. Cosmology

Prof. Dr. Andreas Just

ASTRONOMISCHES RECHEN-INSTITUT HEIDELBERG

Zentrum für Astronomie Heidelberg University

Cosmic Distances

Haus der Astronomie gegründet von der Klaus Tschira Stiftung und der Max-Planck-Gesellschaft

22. Aug. 2013

Cosmic Distances - A. Just

Cosmic Distances

Distance determinations: a fundamental, omnipresent problem in astronomy

Local universe

- Distance ladder
 - Methods/objects/calibration
 - Hubble constant and galaxy distribution

expanding curved space

- Distance and redshift
 - Luminosity, surface brightness, sizes
 - Cornerstone observations

Units

❑ Units
 > Length:
$$1parsec = 1pc = 648,000AU/\pi$$

 $= 206,265AU = 3.26ly = 3.086 \cdot 10^{18}cm$
 > Time: $1year = 1yr = 3.156 \cdot 10^7s$
 > Velocity: $1km/s \approx 1pc/Myr$
 > Mass: $1M_{\odot} \approx 2 \cdot 10^{33}g$
 > Gravitational constant:
 $G = 4.3 \cdot 10^{-3} \frac{pc}{M_{\odot}} \frac{km^2}{s^2} = 4.5 \cdot 10^{-15} \frac{pc^3}{M_{\odot}yr^2}$
22.Aug. 2013
Cosmic Distances - A. Just
Output
Output
Output
Cosmic Distances - A. Just
Output
Output
Output
Description
Output
Output
Output
Description
Output
Output
Output
Output
Output
Description
Descriptio

Units

the astronomical unit AU

physical definition from light running time

A = 499.004782s * c = 149,597,870km

Attention: semi-major axis of the orbit

$$a_{Earth} = 1.00000031A$$

therefore rounded value:

$$1AU = 149.6 \cdot 10^6 km$$

maximum diameter D (e=0.017, b=minor axis):

$$D = 2a = 1.00014 \cdot 2b$$

Basic principle

- Compare an absolute and an apparent property with known dependence on distance
 - Trigonometric parallax
 - orbital motion of Earth angular motion of star at sky
 - Distance modulus
 - Absolute luminosity apparent brightness
 - Classification of objects and calibration
 - Period-luminosity relation (variable stars)
 - Tully-Fisher relation (spiral galaxies)
 - Kinematic distances
 - Binary stars: Radial velocities (+ Kepler laws)
 - Radial velocities proper motion (+spherical expansion)
 - Radial velocities Galactic rotation (+ rotation curve)
 - Hubble flow
 - Hubble constant and redshift

Methods

- direct: light running time
 - radar, satellite signals
 - Planetary system (Kepler laws)
- trigonometric parallaxes: motion of observer projected at sky
 - Nearby stars
- proper motions
 - Binary orbits, streaming parallaxes, shell expansion
- apparent sizes
- photometric parallaxes: distance modulus
 - Variable stars, supernovae
 - Galaxies
 - Tully-Fisher-relation, fundamental plane, brightest cluster members
- Hubble flow/expansion
 - Redshift and Hubble constant
- Miscellaneous methods
 - Surface brightness fluctuations
 - Sunyaev-Zel'dovich-effect
 - Acoustic waves/baryonic oscillations Cosmic Distances - A. Just

22. Aug. 2013

The distance ladder

step	range	methods/objects
1.	10 light-min	light traveling time/ Earth diameter, distance to Moon, Mars, and Venus
2.	5 light-hours; Solar system	light traveling time, Kepler laws/ satellite positions, other planets
3.	100 pc; Solar neighbourhood	trigonometric parallaxes, streaming parallaxes/ nearby stars, Hyades
4.	20 kpc; Milky Way	rotational distances/gas, OB-stars in the Galaxy
5.	1 Mpc; Local Group	photometry; HR-diagram; main sequence fitting: star cluster/nearby galaxies
6.	20 Mpc	photometry; variable stars: cepheids, RR-Lyrae;/local universe
7.	1 Gpc	supernova luminosity; Hubble flow; galaxy cluster luminosities; Tully- Fisher-relation (up to redshift z≈0.3)
8.	>1 Gpc	Redshifts: galaxies, quasars, gas; CMB (world model dependent)

direct methods

- Size of the Earth
 - historically by triangulation and the solar altitude at culmination (Erastothenes 200 B.C.; Picard 1671)
 - definition of the 'meter': 1m=1/40,000,000 of the meridian through Paris: R=6366.2km
 - R(pole)=6357km, R(equator)=6378km
 - light traveling times by satellites (GPS)
- Distance to Moon
 - historically by triangulation and duration of lunar eclipses, orbital time of the Moon: D_{Moon}=60.3R_{Earth}=384,400km
 - Lunar laser ranging experiment (Apollo 11: July 21, 1969):
 D_{Moon}=384,467 km (mean value)
- Planetary system
 - radar, light traveling time (satellite orbits); Kepler laws

(annual) trigonometric parallaxes

Changing direction of a nearby object due to the motion of the observer

On Earth

Measuring the width of a river by the relative angles from two points

Celestial objects

 Relative positions with respect to distant stars from different points at the Earth or in different seasons (annual)

(annual) trigonometric parallaxes

in the sky

from measuring the shift in position of a star against fixed background sources, we can derive its distance

Nearby star moves on an ellipse with angular size in arc seconds: semimajor axis = projection of 1AU

□ (annual) trigonometric parallaxes

The parallax p (in arcsec) is the inverse distance r (in parsec) given by

 $p[''] = \frac{1}{r[pc]}$

precision and range

p=0.05" from ground (statistics of many data points)

- HIPPARCOS satellite: 1mas (=10% error at p=10mas, r=100pc); 20,000 stars at r<100pc
- Gaia project (launch: Nov. 2013): 10⁻⁵"=10µas, r=10kpc
 ---> will provide position and velocity information of ~ one billion (<m_V=20mag) stars in the Milky Way

- next system
 - binary star: α Cen; p = 0."75 Proxima Cen. p = 0."76 (r = 1.3 pc)
 - separation at sky: 3 (=0.1pc in space)
- 2003: new brown dwarf companion of ε Indi discovered
 - ✤ r=3.7pc
- 2003: new nearby star discovered
 - ✤ p = 0."257 (r = 3.9pc)
 - proper motion μ =5.2mas/yr (8th fast; v_t≈0.1km/s)
 - rightarrow m_V=15.4mag (red dwarf)

Colour-magnitude diagram CMD (Hertzsprung-Russell diagram HRD) of nearby stars (r<25pc; Catalogue of Nearby Stars CNS 4)

~6000 stars

- main sequence widened by
 - unresolved binary stars
 - age spread of the stars
 - metallicity spread

Basis for photometric
 Distances of stars

dynamical parallaxes

- visual binaries
 - comparison of semi-major axis 'a' from radial velocities or from the orbital period (3. Kepler law: P² ~ a³) and the apparent orbit in arcsec
 - sum of the masses must be known roughly
 - with period in years and mass in solar units:

$$p[''] = rac{a['']}{(P^2(M_1+M_2))^{1/3}}$$

 Distances to binaries are important to calibrate the absolute magnitudes of main sequence stars

photometric parallaxes

comparison: apparent – absolute magnitude: m-M

★ the definition
$$M = m(r = 10pc)$$

yields $M = 5 - 2.5 \lg L + const.$

* distance modulus: $m - M = 5 \lg r - 5$

with absorption $\frac{A[mag]}{mag}$

$$m = M + 5 \lg r - 5 5 \lg r -$$

• abbreviations:
$$m_B = B$$
 $m_V = V$

Cosmic Distances - A. Just

22. Aug. 2013

*

photometric/spectroscopic parallaxes

- spectral classification of stars
 - giants and dwarfs distinguished by high resolution spectroscopy only
 - correction of extinction and reddening
 - intrinsic scatter of main sequence by
 - metallicity
 - unresolved binary stars
 - main sequence very steep at the bright and at the faint end -> sensitive to colour errors
- spectroscopy
 - observationally high effort
 - individual corrections as above
 - application: equivalent width of Ca K-line

Src.: Voigt

Star clusters

main sequence fitting:

- star clusters
 - uniform metallicity, age
 - same extinction
 - same distance
- Zero-Age-Main-Sequence (ZAMS) in CMD
 - main sequence of age=0
 - superposition of all main sequences at the lower end;
 bright end evolved
 - calibration with Hyades
 - metallicity dependence neglected
- Dust extinction and reddening corrections

Src.: New Cosmos

J.T 1 0000

- dust correction
 - interstellar dust between star and observer leads to
 - a change in magnitude (extinction)
 - and a change in color (reddening), because the extinction is stronger at shorter wave lengths

- dust correction
 - in magnitude (extinction) and colour (reddening)
 - independent of distance (for same foreground dust)
 - extinction A_V connected to reddening $E_{B-V}=(B-V)-(B-V)_0$: $A_V=3.1E_{B-V}=3.1[A_B-A_V]=4.8E_{U-B}$

- dust correction
 - Reddening E_{B-V} from shift in 2-colour diagram
 - Extinction $A_V = 3.1E_{B-V}$ from reddening law
 - \blacktriangleright (E_{B-V},A_V)-shift in CMD to get dereddened data

22. Aug. 2013

Variable stars

uminosity (L_{Sun})

- types and periods
 - ✤ RR Lyrae (P < 1 d)</p>
 - old, metal poor, low mass stars
 - Halo and globular clusters
 - Type I Cepheids (P = 1-50 d)
 - high-mass stars
 - late evolutionary phase
 - Pop I-stars (disc)
 - Type II Cepheids (P = 1-50 d)
 - 1.5 mag fainter
 - Low mass, after helium flash
 - Historical remark
 - δ Cephei in Andromeda galaxy mixed-up with W Virgines in globular clusters
 - Distance too small by factor 2
 - Resolved ~1940 by Baade Cosmic Distances - A. Just

22. Aug. 2013

http://outreach.atnf.csiro.au/educati on/senior/astrophysics/variable_cep heids.html

Period-Luminosity relation

RR-Lyrae

constant absolute luminosity

Cepheids

- Characteristic light curve
- period-luminosity relation
- colour dependent

http://casswww.ucsd.edu/archive/public/tutorial/Distances.html

$$\langle M_V \rangle = -3.53 \lg P + 2.13 \langle (B - V)_0 \rangle - 2.13$$

Distances and redshift: Hubble flow

Milestones of Classical Cosmology

☆~ 1920's: "spiral nebulae" are galaxies similar to the Milky Way (universe ≠ Milky Way)

Expansion of the universe

Hubble diagram (1929): H₀ ≈ 500 km/s/Mpc

Velocity-Distance Relation among Extra-Galactic Nebulae.

Application to more distant galaxies

Identify Cepheids in galaxies far enough away that their redshift reflects the expansion of the universe

 $H_0 = 71 \pm 2$ (random) ± 6 (systematic)

Freedman 2001

22. Aug. 2013

Cosmic Distances - A. Just

The local universe

outer boundary of 'present day (local) universe'

- look-back time
- distance
- ≻ Hubble flow:
- redshift

- t ~ 1 Gyr
- D ~ 300 Mpc
- v ~ 21,000 km/s
- z ~ 0.07
- distance modulus m-M ~ 37.5 mag
- ➢ appearance of Milky Way at distance D~ 300 Mpc
 ❖ absolute mag M_V=-20 $m_V=17.5$ ❖ disc scale length L=3kpc I = 2"❖ cosmol. redshift λ=550nm $\lambda_{obs} = 589nm$
 - still in V band, but colour corrections already relevant

Hubble expansion

> Our personal view

Normalize to present time

 H₀≈70km/s/Mpc, a₀=1, critical density, Hubble time and length

$$\rho_{c0} = \frac{3H_0^2}{8\pi G}, \quad t_H = \frac{1}{H_0} \approx 14Gyr, \quad r_H = \frac{c}{H_0} \approx 4.2Gpc$$

Redshift instead of scale factor

$$a = \frac{1}{1+z}, \quad \mathbf{d}z = -\frac{\mathbf{d}a}{a^2}$$

Friedman equation for expansion history

$$\begin{split} H(z) &= \frac{\dot{a}(z)}{a(z)} = H_0 \, E(z) \\ E(z) &= \sqrt{(1+z)^4 \Omega_R + (1+z)^3 \Omega_M + (1+z)^2 \Omega_K + \Omega_\Lambda} \end{split}$$

Hubble expansion

Distances

Comoving (coordinate) distance is the only 'real' (but unobservable) distance = distance at present time

$$D_{com} = \int \mathbf{d}x = \int \frac{c}{a} \mathbf{d}t = \int_{a}^{1} \frac{c}{a\dot{a}} \mathbf{d}a = r_{h} \int_{0}^{z} \frac{\mathbf{d}z'}{E(z')}$$

Comoving distance at time of emission factor (1+z) smaller

Local Hubble expansion

 $H(z) = H_0 = const$

$$D_{com} \approx r_H \cdot z = \frac{v_{Doppler}}{H_0}$$
$$H_0 = \frac{v_{Doppler}}{D_{com}}, \quad v_{Doppler} = cz$$

The measured redshift is often mis-interpreted as "recession velocity" of an object

Cosmic Distances - A. Just

22. Aug. 2013

Lookback time and distances

Galaxy distribution D_{com}

Redshift surveys: foam structure

calibration uncertain due to peculiar velocities of v~1000km/s
 deviations from linear law at z>0.3 => dependence on world model

Solved by a combination of (up to $z \sim 1$)

cepheids and SN1a

Cosmic Distances - A. Just

22. Aug. 2013

Galaxy distribution

Faber-Jackson relation

- For elliptical galaxies
- ≻ correlation: L_e≈Cσ₀⁴
- generalized to
 (L_e, σ₀, μ₀) relation
 fundamental plane

- Tully-Fisher relation
 - spiral galaxies
 - \succ M_V-v_{rot} relation
 - maximal rotation velocity from 21cm line width

Src.: Galactic Astronomy

'The' cosmological standard candle

□ Supernovae type 1a (SN1a):

- identification by spectrum
- very bright: range >100Mpc
- Maximum brightness depends on width of light curve -> correct to standard light curve -> distance modulus
- Absolute calibration complicated: few nearby SNs; distance to nearby galaxies with large uncertainties

Doppler shift

Hubble expansion + explosion speed

Expansion of outer shells: v = 10000-15000 km/s

Luminosity corrections

K-correction

×

.2

Z

Extinction + reddening

0

.2

0

-.2

-.4

 $K_v(z)$

Cosmic Distances - A. Just

.4

.6

Max. luminosity not the same

- Correlation
 - Duration max. luminosity
- corrections
 - Time dilatation
 - K-correction
 - Extinction
 - Correct for host galaxy light
- calibration with observed SN1a with known distance

Supernovae Typ 1a SDSS II: Supernova Survey: examples

Src.: Zheng et al. 2008 AJ 135, 1766

Distances and Redshift: Standard candles

Slope at z<0.1 determines Hubble constant
 Slope at high redshift constrains the world model

Expanding curved space

Observable quantities in cosmology

- Sobservables independent on the expansion history Redshift – scale factor a=1/(1+z)
- in expanding curved space
 - ♦ luminosity \neq (distance)⁻²
 - ♦ apparent size \neq (distance)⁻¹
 - surface brightness \neq constant
- Virtual distances to stick on traditional observables
 - Doppler distance

$$D_{Doppler} = \frac{v_{Doppler}}{H_0} = \frac{cz}{H_0} = r_H \cdot z$$

Distance measures in cosmology

Transversal sizes

Comoving size D_M (today) and angular size D_{ang} (at emission time)

$$D_{M} = \begin{cases} \frac{r_{H}}{\sqrt{\Omega_{k}}} \sinh\left(\sqrt{\Omega_{k}}D_{com}/r_{H}\right) & \Omega_{k} > 0\\ D_{com} & \Omega_{k} = 0\\ \frac{r_{H}}{\sqrt{|\Omega_{k}|}} \sin\left(\sqrt{|\Omega_{k}|}D_{com}/r_{H}\right) & \Omega_{k} < 0 \end{cases}$$
$$D_{ang} = a(z)D_{M} = \frac{D_{M}}{1+z}$$

Acoustic waves (D_M in CMB at z=1200: $\Omega_K=0$)

➤ Luminosity distance D_{lum} and distance modulus DM
★ bolometric flux diluted with a(z)⁴
D_{lum} = (1 + z)²D_{ang} = (1 + z)D_M
★ with K-correction in filters
DM = m - M - K = 5 lg ($\frac{D_{lum}}{10pc}$) - K

22. Aug. 2013

Distance measures in cosmology

 \geq distance modulus DM(z) from D_{lum}

Closed/flat/open universe = full/dotted/dashed lines

Cosmological redshift

Distance measures in cosmology

> Overview (in standard, flat cosmology)

Dullemond, cosmology lecture WS11/12

Further methods

- 11th-brightest galaxy in galaxy clusters
 - compromise of using bright galaxies and reducing statistical small number noise at bright end of luminosity function
- scintillation measurements at galaxies
 - Relative noise

 $\sigma \propto \sqrt{1/N}$

N=number of stars per pixel

http://www.astro.ucla.edu/~wright/distance.htm

Further methods

- Sunyaev-Zeldovich-effect
 - inverse-Compton scattering of CMB-photons at hot electrons of intra-cluster gas
 - cooling of CMB at low frequencies
 - additional radiation in UV-range
 - column density of electrons from X-ray observations and diameter
 - method independent of Hubble expansion

