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Introduction to Cosmology (SS 2014 block course)

Lecturers: Markus Pössel & Simon Glover

1 Formation of structure: linear regime

• Up to this point in our discussion, we have assumed that the Universe is perfectly
homogeneous on all scales. However, if this were truly the case, then we would not be
here in this lecture theatre.

• We know that in reality, the Universe is highly inhomogeneous on small scales, with
a considerable fraction of the matter content locked up in galaxies that have mean
densities much higher than the mean cosmological matter density. We only recover
homogeneity when we look at the distribution of these galaxies on very large scales.

• The extreme smoothness of the CMB tells us that the Universe must have been very
close to homogeneous during the recombination epoch, and that all of the large-scale
structure that we see must have formed between then and now.

• In this section and the next, we will review the theory of structure formation in an
expanding Universe. We start by considering the evolution of small perturbations
that can be treated using linear perturbation theory, before going on to look at which
happens once these perturbations become large and linear theory breaks down.

1.1 Perturbation equations

• We start with the equations of continuity

∂ρ

∂t
+ ~∇ · (ρ~v) = 0, (1)

momentum conservation (i.e. Euler’s equation)

∂~v

∂t
+
(
~v · ~∇

)
~v = −

~∇p
ρ

+ ~∇Φ (2)

and Poisson’s equation for the gravitational potential Φ:

∇2Φ = 4πGρ. (3)

• We next split up the density and velocity in their homogeneous background values ρ0

and ~v0 and small perturbations δρ, δ~v. If we let ~r represent physics coordinates, then
our unperturbed velocity is simply

~v0 = H~r, (4)

i.e. it is the Hubble flow.
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• To first order in our small perturbations, the continuity equation becomes

∂ (ρ0 + δρ)

∂t
+ ~∇ · (ρ0~v0 + δρ~v0 + ρ0δ~v) = 0. (5)

This can be simplified by noting that the unperturbed density and velocity must also
satisfy a continuity equation

∂ρ0

∂t
+ ~∇ · (ρ0~v0) = 0. (6)

Hence, our perturbation equation becomes

∂δρ

∂t
+ ~v0 · ~∇δρ+ ρ0

~∇ · δ~v + δρ~∇ · ~v0 = 0. (7)

(Note that the ∇ρ0 term vanishes due to the homogeneity that we have assumed for
our unperturbed state).

• If we define the density contrast

δ ≡ δρ

ρ0

, (8)

then we can write this in a more compact form as

δ̇ + ~v0 · ~∇δ + ~∇ · δ~v = 0. (9)

• From the momentum conservation equation, we obtain the relationship

∂δ~v

∂t
+
(
δ~v · ~∇

)
~v0 +

(
~v0 · ~∇

)
δ~v = −

~∇δp
ρ0

+ ~∇δΦ, (10)

which can be simplified to

∂δ~v

∂t
+Hδ~v +

(
~v0 · ~∇

)
δ~v = −

~∇δp
ρ0

+ ~∇δΦ, (11)

• Finally, from the Poisson equation we have

∇2δΦ = 4πGρ0δ. (12)

• We now introduce comoving coordinates ~x ≡ ~r/a, and comoving peculiar velocities,
~u ≡ δ~v/a. Our spatial derivative transforms as

~∇r =
1

a
~∇x. (13)

Our time derivative, on the other hand, transforms as

∂

∂t
+H~x · ~∇x →

∂

∂t
. (14)
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• In comoving coordinates, our perturbation equations become

δ̇ + ~∇ · ~u = 0, (15)

~̇u+ 2H~u = −
~∇δp
a2ρ0

+
~∇δΦ
a2

, (16)

∇2δΦ = 4πGρ0a
2δ, (17)

where for simplicity we write ~∇x simply as ~∇.

• To close this set of equations, we also need an equation of state linking the pressure
and density fluctuations:

δp = c2
sδρ = c2

sρ0δ. (18)

1.2 Density perturbations

• By combining our first two perturbation equations, we can derive the following second-
order differential equation of the density contrast:

δ̈ + 2Hδ̇ =

(
4πGρ0δ +

c2
s∇2δ

a2

)
. (19)

• To solve this, we start by decomposing δ into a set of plane waves:

δ(~x, t) =

∫
d3k

(2π)3
δ̂
(
~k, t
)
e−i

~k·~x. (20)

• Our Fourier amplitudes then obey the equation

¨̂
δ + 2H

˙̂
δ = δ̂

(
4πGρ0 −

c2
sk

2

a2

)
. (21)

• In the limit k → 0 (i.e. the long wavelength limit), this reduces to

¨̂
δ + 2H

˙̂
δ = 4πGρ0δ̂, (22)

which we recognise as the equation for a damped harmonic oscillator.

• In an Ωm = 1 Universe, we can write this equation as

¨̂
δ + 2H

˙̂
δ =

3

2
H2δ̂. (23)

(In an Ωm 6= 1 Universe, things are a little more complex, but at high redshift Ωm ' 1).
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• We now try a solution of the form δ̂ ∝ tn. This yields the equation

n(n− 1)
δ̂

t2
+ 2Hn

δ̂

t
=

3

2
H2δ̂. (24)

For Ωm = 1, we know that H(t) = 2/3t, and so this equation becomes

n(n− 1)
δ̂

t2
+

4

3
n
δ̂

t2
=

2

3

δ̂

t2
. (25)

This equation has a non-trivial solution only when n satisfies

n2 +
n

3
− 2

3
= 0. (26)

This equation has solutions n = 2/3 and n = −1, corresponding to a growing mode
δ̂ ∝ t2/3 and a decaying mode δ̂ ∝ t−1.

• It is convenient to express the evolution of δ with redshift in terms of the current value,
δ0, and a term known as the linear growth factor, D+(z):

δ(z) = δ0D+(z). (27)

For an Einstein-de Sitter Universe, D+(z) = (1 + z)−1. For other cosmological models,
we have the rather more complicated expression:

D+(z) =
1

1 + z

5Ωm

2

∫ 1

0

da

a3H(a)3
. (28)

• Observations of the CMB show us that at z ∼ 1000, the perturbations in the gas
component have amplitudes that are of order 10−5. If these perturbations then grow
as δ̂ ∝ t2/3, then by the time we reach redshift zero, they will have grown by at most
a factor of 1000, and will still be of order 1%.

• Clearly, perturbations in the gas component alone cannot account for the highly inho-
mogeneous density distribution we see around us. So how does this structure form?

• Dark matter provides a resolution to this conundrum. Perturbations in the dark
matter couple to the radiation field only through their gravitational influence (rather
than by direct scattering, as is the case for the gas), and hence can be much larger
than the gas perturbations without overly perturbing the CMB. By starting with much
larger perturbations, we can reach the δ ∼ 1 regime much sooner, allowing us to form
the observed structures.

1.3 Jeans length, Jeans mass

• From Equation 21, we see that the source term for our density perturbation equation
is positive only if

k > kJ ≡
2
√
πGρ0

cs

. (29)

In other words, we will get growing perturbations only if they have wavenumbers that
satisfy this criterion.
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• An alternative way to express this criterion is in terms of a critical wavelength, defined
as

λJ ≡
2π

kJ

= cs

√
π

Gρ0

. (30)

This critical value is known as the Jeans length. Only perturbations with wavelengths
greater than the Jeans length will grow.

• Physically, we can understand the existence of this critical length scale by considering
the balance between gravity and thermal pressure. If we take a small part of the pre-
galactic gas and perturb it adiabatically, its density and temperature will increase. It
will therefore be over-pressured relative to the surrounding gas, and the pressure gra-
dients that we have created will try to smooth out the perturbation. Our perturbation
will survive and grow only if its self-gravity – i.e. the gravitational force acting on the
perturbation due to the perturbation’s own mass – is larger than the pressure forces
acting to smooth out the perturbation.

• It should be plain that for very small perturbations, with very low masses, pressure
will overcome gravity. Similarly, it should be clear that on very large scales, gravity
will win. There must therefore be some intermediate scale at which we go from being
pressure-dominated to being gravity-dominated. This critical scale is just the Jeans
length.

• We can also define a critical mass scale to go along with our critical length scale. This
mass scale is known as the Jeans mass and is given by1

MJ =
4π

3
ρ0

(
λJ

2

)3

. (31)

• What happens if instead of gas, we consider dark matter? Most viable dark matter
candidates are effectively collisionless, and hence have no sound speed per se. Does
this mean that we can simply set cs = 0, and hence conclude that perturbations on all
scales are unstable?

• For cold dark matter (CDM), this is actually a pretty good approximation. However,
on very small scales it breaks down due to a phenomenon known as free streaming.
This refers to the fact that our collisionless dark matter particles have a non-zero
velocity dispersion. If their velocities are larger than the escape velocity of our pertur-
bation, then they will simply stream away from the overdensity before it can undergo
gravitational collapse.

1Note that there is a certain arbitrariness in our choosing to compute the mass within a sphere of radius
λJ/2, and not, say, a sphere of radius λJ or a cube of side length λJ. Consequently, the Jeans mass is a
somewhat fuzzy concept, and should best be thought of as simply giving us a guide to the critical mass
of an unstable perturbation. In practice, for perturbations with M ∼ MJ, we generally need numerical
simulations in order to determine the ability of the perturbation to collapse and the timescale on which this
occurs, particularly if the latter is comparable to the current expansion timescale.
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• A careful analysis of this phenomenon leads one to derive an expression very similar
to that for the Jeans length, only with the velocity dispersion of the dark matter in
place of the sound speed. However, for CDM, the velocity dispersion is very small,
and hence the Jeans mass and Jeans length of the dark matter are also very small; for
instance, Diemand et al. (2005, Nature, 433, 389) show that for WIMP dark matter,
the lowest mass dark matter halos should have masses of the order of an Earth mass.

1.4 Perturbations in a radiation-dominated Universe

• Up to this point, we have implicitly been assuming that the Universe is matter domi-
nated. However, our initial density perturbations come into existence during the infla-
tionary epoch and hence spend the first part of their life growing during the radiation-
dominated era.

• In principle, correct treatment of perturbation growth during the radiation-dominated
era requires a relativistic treatment of the governing equations. In practice, provided
we are dealing with small perturbations, a non-relativistic treatment suffices.

• If we ignore pressure gradients (i.e. consider scales much larger than the Jeans length),
then the governing equation for the growth of density perturbations in the radiation-
dominated case can be derived in a similar fashion to that in the matter dominated case
if we make the substitutions ρ→ ρ+p/c2 in the continuity equation, and ρ→ ρ+3p/c2

in the Poisson equation. Using the fact that p = ρc2/3 for radiation, we find that

¨̂
δ + 2H

˙̂
δ =

32π

3
Gρ0δ̂. (32)

• We can rewrite this equation in terms of the Hubble parameter as

¨̂
δ + 2H

˙̂
δ = 4H2δ̂, (33)

Since H = 1/2t in the radiation-dominated era, we find that we again have two so-
lutions: a growing mode with δ̂ ∝ t and a decaying mode with δ̂ ∝ t−1. (Note that
in deriving these soluations, we have assumed that Ω = 1. This is always a good
approximation during the radiation-dominated era).

• In terms of the scale factor, our growth mode is δ̂ ∝ a2; hence, long wavelength
perturbations grow much faster with increasing a in the radiation-dominated era than
in the matter-dominated era, where they evolve only as δ̂ ∝ a.

• This is for perturbations on scales large enough that pressure forces are irrelevant.
What happens on smaller scales? In the case of perturbations in the radiation or in
the baryons (which are strongly coupled to the radiation at this point), the behaviour
is fairly clear. We define a Jeans length as before,

λJ = cs

√
π

Gρ0

, (34)
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but in this case our sound-speed cs = c/
√

3, where c is the speed of light, and so

λJ = c

√
π

3Gρ0

. (35)

• If we compare this number to the Hubble radius, rH = c/H, we find that λJ/rH =√
8π2/9 ' 3; in other words, perturbations on scales comparable to the size of the

observable Universe are suppressed during the radiation-dominated era.

• What about the dark matter? This does not couple directly to the radiation, and
hence does not feel the radiation pressure. However, the growth of perturbations on
scales λ� rH is nevertheless suppressed, for a reason that we will now explain.

• If we consider scales r � λJ, then we can ignore any perturbations in the radiation
component and treat it simply as a flat background. In this limit, the equation de-
scribing the growth of perturbations in the dark matter then becomes

¨̂
δ + 2H

˙̂
δ = 4πGρmδ̂. (36)

Since we are in the radiation-dominated regime, we can write H2 = 8πG(ρm + ρr)/3.
If we now change variables to y ≡ ρm/ρr = a/aeq, we find (after considerable algebra)
that

δ̂′′ +
2 + 3y

2y(1 + y)
δ̂′ − 3

2y(1 + y)
δ̂ = 0, (37)

where δ̂′ ≡ dδ̂/da.

• If we adopt the trial solution δ̂ = Cy+D, then it is easy to demonstrate that this is a
solution to the above equation, provided that D = 2C/3. Therefore, we can write the
growing mode solution as

δ̂ = C

(
y +

2

3

)
, (38)

which becomes independent of y in the limit y � 1.

• We therefore see that as long as we are in the radiation-dominated regime, our small-
scale dark matter perturbations do not grow. Physically, we can understand this
effect as follows: the growth rate of the small perturbations (driven by ρm) is much
slower than the expansion rate of the Universe (driven by ρr), and so δ is frozen at an
approximately constant value for as long as ρr � ρm. Note, however, that this only
holds on scales smaller than λJ. On scales larger than the Jeans length for the radiation-
dominated fluid, both ρr and ρm contribute to the growth rate of the perturbations,
which therefore can still grow significantly during this epoch.
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1.5 Peculiar velocities

• Suppose a galaxy is moving with some comoving peculiar velocity ~u relative to the
Hubble flow in an otherwise unperturbed universe. In that case, we know from the
perturbation equations that

~̇u = −2H~u. (39)

We therefore see that in the absence of pressure forces or gravitational accelerations
due to perturbations in the density field, peculiar velocities decay over time. Indeed,
since

d

dt
≡ aH

d

da
, (40)

we can easily show that
d ln ~u

d ln a
= −2, (41)

and hence that peculiar velocities decay as u ∝ a−2 and proper velocities decay as
v ∝ a−1 if no forces are acting.

• If we now account for the gravitational acceleration due to the perturbations in the
potential associated with the density perturbations, then our equation of motion be-
comes

~̇u+ 2H~u =
~g

a
, (42)

where ~g = −∇δΦ/a. (Note that we are assuming here that we are interested in scales
λ� λJ, so that pressure forces can still be neglected).

• The general solution to this equation can be decomposed into two parts: one parallel
to ~g, and a second independent of ~g, and which therefore must satisfy

~̇u+ 2H~u = 0. (43)

• A guide to the physical interpretation of these solutions is provided by the perturbation
equations, which tell us that in the linear regime

∇ · ~u = −δ̇. (44)

This equation shows us that it is possible to have what are known as vorticity modes,
for which ∇ · ~u = 0 and δ̇ vanishes. However, we know that δ̇ is non-zero for any non-
zero δ, so these modes are not associated with any perturbation to the density field or
the potential. They therefore have no gravitational acceleration associated with them,
and hence are the desired solutions of Equation 43.

• We can therefore decompose the peculiar velocity field into a component whose be-
haviour is governed by the gravitational accelerations induced by the density pertur-
bations, and a second vorticity component that satisfies Equation 43. However, we
know that solutions to Equation 43 decay rapidly with time, and so even if we have
a vorticity component initially, it will quickly become negligible in comparison to the
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component induced by the gravitational acceleration due to the density perturbations.
It is therefore generally a good approximation to treat the linear velocity field as being
curl-free.

• To find the component of the peculiar velocity field parallel to ~g, we write it as ~u =
F (t)~g. Taking the divergence of this yields

∇ · ~u = F (t)∇ · ~g. (45)

However, we know from the continuity equation that ∇ · ~u = −δ̇, while Poisson’s
equation in comoving coordinates tells us that ∇ · ~g = −4πGρ0aδ. Therefore,

δ̇ = 4πGρ0aδF (t), (46)

and so

F (t) =
δ̇

4πGρ0aδ
. (47)

• In a matter-dominated Universe, Friedmann’s equation tells us that

4πGρ0a =
3

2
H2Ωma, (48)

and so F (t) can also be written as

F (t) =
2δ̇

3H2Ωmaδ
. (49)

Finally, we can use the fact that

δ̇ ≡ dδ

dt
= aH

dδ

da
(50)

to write F (t) as

F (t) =
2f(Ωm)

3HaΩm

, (51)

where f(Ωm) ≡ (a/δ)(dδ/da) is a function only of Ωm and is well-approximated by
f ' Ω0.6

m .

• The comoving peculiar velocity field is therefore given by

~u =
2f(Ωm)

3HaΩm

~g, (52)

which in physical units becomes

~v =
2f(Ωm)

3HΩm

~g. (53)

• In Fourier space, we can use the fact that ~g and ~k are parallel to derive an expression
for the Fourier components of ~v directly from the continuity equation. We find that

vk = −iHf(Ωm)a

k
δ̂k, (54)

demonstrating that the peculiar velocity field is sensitive to smaller k modes (i.e. larger
wavelength modes) than those that dominate the density field.
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1.6 Power spectrum

• It is widely believed that the seeds of our density fluctuations were generated by quan-
tum fluctuations occurring during the inflationary epoch. If so, then so long as it
remains in the linear regime, the density contrast field δ has a very useful property:
it is a homogeneous, isotropic Gaussian random field. Its statistical properties are
therefore complete determined by only two numbers: its mean and its variance.

• Mass conservation implies that 〈δ〉 = 0, where the angle brackets denote a space
average.

• The variance of δ is conveniently described in terms of the power spectrum P (k):〈
δ̂(~k)δ̂∗(~k′)

〉
≡ (2π)3P (k)δD

(
~k − ~k′

)
, (55)

where δD is the Dirac delta function.

• The initial perturbations, seeded by quantum fluctuations during the inflation epoch,
are typically assumed to have a power spectrum

Pi(k) ∝ k, (56)

known as the Harrison-Zel’dovich spectrum.

• However, this initial power spectrum is subsequently modified because perturbations on
different scales k do not all grow by the same amount during the radiation-dominated
epoch.

• As we saw in the previous section, modes with wavelengths λ � rH grow as δ ∝ a2

in the radiation-dominated era, and δ ∝ a in the matter-dominated era. On the other
hand, modes with λ � rH do not grow during the radiation-dominated era, and then
subsequently begin to grow as δ ∝ a during the matter-dominated era.

• To allow us to examine the effects of this difference in growth rates, let us make two
simplifications. We will assume that the behaviour of a given mode changes instantly
once λ = rH, and we will also assume that the evolution of the Universe changes
instantly from radiation-dominated to matter-dominated at the redshift of matter-
radiation equality (i.e. the redshift at which ρm = ρr).

• In this simplified picture, modes which have λ > rH throughout the radiation-dominated
era evolve as δ ∝ a2 throughout the radiation-dominated era, and then as δ ∝ a in the
matter-dominated era. On the other hand, modes for which λ = rH at some point dur-
ing the radiation-dominated era evolve initially as δ ∝ a2, then “freeze” once λ = rH,
and finally start to grow again as δ ∝ a at redshifts z < zeq. Small-scale modes (with
large k) therefore have their growth suppressed relative to large-scale modes (small k).
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• To quantify this, we first consider the mode that has λ = rH at z = zeq; we speak of
this mode “entering the horizon” at this time. We can write the comoving wavenumber
for this mode as

k0 = aeq
2π

rH

= 2π
H0

c

√
2Ωm,0

aeq

= 2π
H0

c
Ωm,0

√
2

Ωr,0

. (57)

• Next, consider some mode that enters the horizon at the point when the scale factor
is aenter < aeq. Up to this point, this mode has grown at the same rate as the mode
with wavenumber k0, but during the period from aenter to aeq, it does not grow. On
the other hand, the larger mode continues to grow as δ ∝ a2 during this period.

• At aeq, the smaller mode is therefore suppressed relative to the larger mode by a factor

fsup =

(
aenter

aeq

)2

=

(
k0

k

)2

. (58)

• After we enter the matter-dominated regime, the relative size of the modes does not
change (so long as we remain in the linear regime). Since the power spectrum scales
as δ2, the final power spectrum is therefore related to the initial power spectrum by:

Pf (k) ∝


f 2

supPi(k) k > k0

Pi(k) k < k0

(59)

• If our initial power spectrum is the Harrison-Zel’dovich spectrum, we find that

Pf (k) ∝


k−3 k > k0

k k < k0

(60)

where we have made use of the fact that fsup ∝ k−2.

• This behaviour of the power spectrum has important consequences when we come to
consider the formation of highly non-linear structures.

1.7 Relative velocity of dark matter and baryons

• Prior to recombination, the baryons and the radiation are tightly coupled together by
Compton scattering, which allows for efficient momentum transfer from one component
to another.

• As already noted, an important consequence of this is that the effective sound-speed
in this coupled fluid is very high: cs,eff = c/

√
3, where c is the speed of light.

• Another important consequence is the fact that small-scale perturbations in the bary-
onic component are smoothed away by an effect known as Silk damping.
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• If we have an overdensity, then locally we will have a higher number density of photons
than in the surrounding gas. These photons will try to diffuse away from the overden-
sity, in order to restore the photon number density to equilibrium. Because of the high
optical depth of the Universe at this epoch, they will do this via radiation diffusion
(i.e. each photon will execute a random walk away from its initial location). As they
do so, they will drag the baryons along with them, owing to the strong momentum
coupling between baryons and photons.

• We can write the photon mean free path as

λmfp =
1

neσT

, (61)

where σT is the Thomson scattering cross-section. The diffusion coefficient is then
given by

D =
1

3
λmfpc, (62)

and the diffusion radius (i.e. the distance to which the photons diffuse in time t) is
given by

rD '
√
Dt. (63)

• At recombination, t ∼ 1013 s and ne ' 400 cm−3. Therefore, λmfp ' 1.2 kpc and rD '
6.2 kpc, where these distances are in physical units. In comoving units, the diffusion
length corresponds to ∼ 6 Mpc, and hence Silk damping will erase any perturbations
in the baryon-photon fluid on scales smaller than this.

• On scales r > rD, perturbations survive. As we have seen, we can consider the linear
perturbations on these larger scales to be built up of a superposition of sound waves.
Detailed analysis of the behaviour of the perturbations in this regime shows that owing
to the effects of constructive interference, we expect to get the largest effects on wave-
lengths that are harmonics of the horizon scale, i.e. λ = 1

n
c

H(z)
, where n is an integer,

provided that λ > rD.

• This is a strong prediction of the basic hot Big Bang model, and has been successfully
confirmed – these so-called “acoustic oscillations” are responsible for oscillatory pattern
that we see if we measure the strength of the CMB anisotropies on a range of different
angular scales, and we will discuss them in more detail later in this course.

• Now, what happens once the Universe recombines? Clearly, ne drops rapidly and
hence the photon mean free path increases significantly. However, at the same time,
the coupling between photons and baryons becomes much weaker, as the timescale
on which the two components can exchange momentum becomes comparable to or
greater than the expansion timescale. Therefore, at a redshift z ∼ 1000, the photons
and baryons decouple. Although some scattering events occur after this time, and
there remains a transfer of energy from the photons to the baryons, the rate at which
momentum is transferred becomes too small to significantly affect the mean momentum
of the baryons, and perturbations in the photons and in the baryons no longer evolve
in the same fashion.
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• As a result, the sound speed of the baryons drops very sharply from c/
√

3 to cs =√
kT/µmH, the usual thermal sound-speed of an ideal gas. The Jeans length in the

baryons also drops sharply, and on small-scales the baryons start to fall into the small-
scale potential wells created by the dark matter. The dark matter, of course, does
not couple to the radiation, and hence the perturbations in this component are not
affected by Silk damping. Therefore, the small-scale perturbations in the baryons are
regenerated, thanks to the dark matter, while the radiation component remains smooth
on these scales.

• All of the effects that I have described so far were understood by the late 70s and early
80s. However, in 2010, Tseliakovich & Hirata pointed out another consequence of the
baryon-photon coupling that had previously been overlooked. Before decoupling, the
baryon-photon fluid has a non-zero velocity relative to the dark matter, owing to the
effect of the acoustic oscillations in the former. What Tseliakovich & Hirata realized
was that the baryons would initially retain this relative velocity even after decoupling.

• Detailed calculations (e.g. Tseliakovich & Hirata, 2010, Phys. Rev. D, 82, 083520) show
that at decoupling, the rms size of the relative velocity2 is around 30 km s−1. This is
very small compared to the sound-speed prior to decoupling, but is large compared to
the sound-speed of the baryons after decoupling, which is ∼ 5–6 km s−1.

• The coherence length of this relative velocity is comparable to the Silk damping scale,
i.e. a few comoving Mpc. On small scales, therefore, the motion of the gas relative to
the dark matter can be modelled as a bulk velocity. The size of this velocity decreases
as the Universe expands – as with any peculiar velocity, it falls off as vpec ∼ (1 + z).
However, the sound speed in the gas also falls off with decreasing redshift, initially as
cs ∝ (1 + z)1/2 in the regime where Tgas ' Tr, and then as cs ∝ (1 + z) in the regime
where Tgas evolves adiabatically.

• At z ∼ 100 – approximately the redshift at which the behaviour of T changes – the
rms streaming velocity is around 3 km s−1 and the sound-speed is around 1.7 km s−1,
and so the streaming motions are still supersonic. They remain so at lower redshift,
as from this point on both cs and vpec evolve similarly with redshift.

• The full effects of this bulk motion on the formation of structure remain to be explored,
but one obvious effect will be to increase the effective Jeans mass of the gas by a factor

finc =

(
vpec

cs

)3

∼ 10. (64)

2Note that in a homogeneous, isotropic Universe, the mean streaming velocity must be zero, but the
root-mean-squared (rms) streaming velocity need not be zero.
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2 Formation of structure: non-linear regime

2.1 The spherical collapse model

• Our treatment above works well in the linear regime, when |δ| � 1, but breaks down
once |δ| ∼ 1, since at this point we are no longer dealing with small perturbations, and
hence can no longer use the tools of linear perturbation theory.

• The evolution of the gas and dark matter in the so-called non-linear regime is very
complicated, and in general we need to use numerical simulations, rather than analyt-
ical techniques, in order to follow it.

• However, there are a few useful approximate models that we can look at that give us
some guidance as to the behaviour of the gas and dark matter in the non-linear regime.

• The first example that we’re going to look at is known as the spherical collapse
model.

• Consider a spherical overdensity with uniform internal density. As this perturbation
is overdense, it will reach some maximum physical radius and then collapse due to its
own self-gravity. We denote the metric scale-factor at which the perturbation reaches
its turn-around radius as ata, and the radius of the perturbation at this point as Rta.
We then define dimensionless coordinates:

x ≡ a

ata

, y ≡ R

Rta

. (65)

• If we consider, for simplicity, an Einstein-de Sitter Universe, then we can write the
Friedmann equation as

dx

dτ
= x−1/2, (66)

where τ ≡ Htat and Hta = H0a
−3/2
ta .

• The equation of motion for the radius of our sphere can be written as

R̈ = −GM
R2

, (67)

= −4π

3
ρtaR

3
ta

G

R2
. (68)

Converting from t to τ , and defining a new overdensity parameter ζ through the equa-
tion

ρta =
3H2

ta

8πG
ζ (69)

allows us to write this in a much simpler form:

d2y

dτ 2
= − ζ

2y2
. (70)

Note that ζ is simply the overdensity of our perturbation at turn-around with respect
to the cosmological background at the same time, measured in units of ρcrit.
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• To solve our equation of motion, we need to specify some boundary conditions. The
obvious choices are

dy

dτ

∣∣∣∣
x=1

= 0, y|x=0 = 0, (71)

i.e. our perturbation starts with zero radius when a = 0 and reaches its maximum size
when a = ata.

• With these boundary conditions, and with the help of the Friedmann equation, we can
obtain the following solution

τ =
1√
ζ

[
1

2
arcsin(2y − 1)−

√
y − y2 +

π

4

]
, (72)

which cannot easily be inverted to give y in terms of τ .

• At turn-around, x = y = 1 and τ = 2/3, which means that

ζ =

(
3π

4

)2

' 5.55. (73)

• By symmetry, the time taken from turn-around to collapse must be the same as that
taken from the start to turn-around, i.e. in the absence of pressure forces or any non-
sphericity, our perturbation will collapse to a point at τ = 4/3, corresponding to
x = 22/3.

• If our perturbation had not begun to evolve non-linearly, but had simply continued to
evolve following the linear solution, its overdensity at this point would be merely

δc = 22/3δta ' 1.69. (74)

• In reality, our perturbation will never be perfectly spherical; non-spherical motions will
develop as the perturbation collapses and will eventually halt the collapse.

• We assume that after the collapse halts, the collapsed object – often referred to as a
dark matter halo, assuming we’re considering a perturbation in the dark matter –
relaxes into a state of virial equilibrium. In this case, the virial theorem tells us that
the magnitude of the potential energy of the halo is equal to twice its kinetic energy:

|Wvir| = 2Tvir (75)

Energy conservation implies that the kinetic energy of the virialized halo must be equal
to the difference between the potential energy at turnaround, Wta, and the potential
energy of the virialized halo:

|Wvir| − |Wta| = Tvir. (76)

Therefore,

|Wta| = Tvir, (77)

|Wvir| = 2|Wta|. (78)
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Since the potential energy of a spherical perturbation of radius R scales as 1/R, this
implies that

Rvir =
Rta

2
. (79)

• We can use this result to solve for the overdensity of the perturbation with respect
to the background density at the time that the collapsing perturbation first virializes.
Two factors contribute to this: the perturbation has collapsed (and hence increased
its density), and the Universe has expanded (and hence decreased its density). The
resulting density contrast is given by

∆ =

(
22/3

1/2

)3

ζ = 32ζ = 18π2 ' 178. (80)

• Up to this point, we have been assuming an Einstein-de Sitter cosmological model.
A similar analysis in the case where Ωm 6= 1 is possible, but requires us to solve the
resulting equations numerically. However, the end result is not too different from the
Einstein-de Sitter case. For example, for Ωm,0 = 0.3 and ΩΛ = 0.7, we find that at
z = 0, ∆ ' 100.

• In reality, non-linear structures forming in the dark matter are unlikely to be perfectly
spherical. Indeed, N-body simulations that model the full non-linear evolution of the
dark matter (albeit with some finite mass resolution) show that much is located in
mildly overdense filaments and sheets, with larger overdensities located within these
structures, particularly at the intersection of filaments.

• These highly overdense regions typically have an ellipsoidal morphology, and are com-
monly referred to as dark matter halos. Halos that have masses that exceed the
local effective Jeans mass of the gas can capture gas from their surroundings. If this
gas then cools and undergoes further gravitational collapse, then the formation of stars
will be the end result. In other words, these dark matter halos are the locations in
which galaxies form. It is therefore important to understand their properties and their
abundance within the Universe.

• In practice, even though these dark matter halos are far less symmetric than the ide-
alized perturbation that we have considered in this section, the results of the spherical
collapse model provide a reasonable first approximation when discussing their proper-
ties. This simple model also gives us a basis for determining the number density of
halos of a given mass that we expect to find in the Universe, as we will see later.

2.2 Halo density profiles

• Although the structure of simulated dark matter halos can be complex when looked at
in detail, there are some surprising underlying regularities. Most prominent amongst
these is the halo density profile.
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• If we spherically average the dark matter density (i.e. compute the mean density of
dark matter in a series of spherical shells that lie at increasing radial distances r from
the centre of mass), then we find that the density profile is well approximated at most
radii by the Navarro-Frenk-White or NFW profile:

ρ(r) =
δc

(r/rs)(1 + r/rs)2
ρ0, (81)

where ρ0 is the cosmological background density.

• These profile is characterized by two numbers: a scale radius rs and a characteristic
overdensity δc. At distances r � rs, the NFW profile scales as ρ(r) ∝ r−1, while at
r � rs the profile steepens, falling off as ρ(r) ∝ r−3.

• The fact that ρ→∞ as r → 0 tells us that this description of the density profile must
break down at some point, and indeed we expect this to occur on scales comparable
to the free-streaming length of the dark matter particles, i.e. the mean distance
that the particles move due to their random velocities within one dynamical time.
However, for cold dark matter, this length-scale is small, and hence it is believed that
the NFW profile (or something qualitatively similar) remains a good description of the
dark matter until r is very small. CDM halos are therefore believed to have strong
density cusps.

• We can compute the mass associated with a given dark matter halo simply by inte-
grating the density profile out to the edge of the halo:

M(r) = 4π

∫ rh

0

r2ρ(r)dr = 4πδcρ0r
3
s

[
ln(1 + x)− x

1 + x

]
, (82)

where x = rh/rs. However, this prompts the question of how to define the “edge” of
the halo.

• The dark matter density distribution within the halo connects smoothly to its sur-
roundings, without any sudden discontinuity marking a real, physical edge. Therefore,
to some extent, the choice of an edge, and hence of a mass for the halo, is a matter of
convention.

• Typically, we attempt to associated the edge of the dark matter halo with its virial
radius, and we estimate the size of this in a way that is inspired by the spherical collapse
model discussed in the previous section. We saw previously that in an Einstein-de Sitter
universe, a virialized spherical perturbation has a mean density that is 18π2 ' 178
times higher than the cosmological background density at the moment of virialization.

• The virial radius of a halo is therefore often defined to be the radius in the spherically-
averaged density profile enclosing some specified mean overdensity. The spherical col-
lapse model suggests that the overdensity used in this definition should be 18π2, but
for simplicity it is common to instead take a value of 200. We therefore associate the
“edge” of the halo with the radius r200 for which

M(r200) ≡M200 =
4π

3
r3

200 × 200ρ0. (83)
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• Using our expression for M(r), it is easy to show that M200 can be written as The
associated virial mass, M200, is then simply given by

M200 = 4πδcρ0r
3
s

[
ln(1 + c)− c

1 + c

]
, (84)

where c = r200/rs is a parameter known as the concentration of the halo. We therefore
have

4πδcρ0r
3
s

[
ln(1 + c)− c

1 + c

]
=

4π

3
r3

200 × 200ρ0. (85)

Rearranging this, we find that δc is related to the concentration by

δc =
200

3

c3

[ln(1 + c)− c/1 + c]
. (86)

• We therefore see that instead of specifying rs and δc, we can instead fully characterize
the NFW density profile of a halo by specifying c and M200. Furthermore, we find
empirically that c is only a weakly varying function of the halo mass and the redshift
of formation of the halo. (See e.g. Ludlow et al., 2014, MNRAS, 441, 378).

• It remains unclear exactly why the spherically-averaged density profiles of dark matter
halos are approximated so well by the NFW profile. It presumably has something to do
with the physics of halo assembly, but this is a topic that is still not well understood.

• It is also unclear whether the dark matter halos associated with real galaxies actually
follow the NFW profile. In particular, efforts to constrain the dark matter density
profile close to the centre of dark matter dominated dwarf spheroidal galaxies tend
to indicate a profile with a flat, constant density core, rather than a power-law cusp.
This result is in direct contradiction to the results of simulations of halo growth that
follow only the dark matter, but it has recently been suggested that the inclusion of
the effects of stellar feedback may resolve this difficulty (e.g. Pontzen & Governato,
2012, MNRAS, 421, 3464).

2.3 The Zeldovich approximation

• The Zeldovich approximation is a simple but powerful model for the evolution of density
perturbations in the non-linear regime. At heart, it is a kinematical approach to the
growth of structure: we work out the initial displacement of particles due to some
perturbation and then simply assume that they continue to move in the same direction
at all later times.

• To express this mathematically, we write the proper coordinates ~x of a given particle
as

~x(t) = a(t)~q + b(t)~f(~q). (87)

If b(t) → 0 as t → 0, then the second term vanishes as we approach t = 0 and
we simply have the usual mapping between proper and comoving coordinates. We
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therefore identify ~q at t = 0 as the initial comoving coordinate of the particle in
question.

• In the absence of the second term, it is easy to see that the subsequent evolution of ~x
would simply be given by the Hubble flow. The effect of the second term is therefore to
perturb the position of our particle away from where it would be if it simply followed
the Hubble flow – i.e. it corresponds to the displacement due to the peculiar velocity
field.

• The key assumption at the heart of the Zeldovich approximation is that this dis-
placement can be written in the form that we have used above, as the product of a
time-independent displacement field ~f(~q) and a time-dependent scale factor b(t).

• In order for this approximation to be useful, we need some way to relate b and ~f to
other quantities that we already know. We start by relating the density perturbation
to the displacement field ~f .

• Mass conservation requires that the mass associated with any small Lagrangian volume
(i.e. a volume moving with the flow) remains constant. Therefore, the density at
position ~x at time t, ρ(~x, t) is related to the initial density ρinit(~q, 0) by

ρ = ρinit

∣∣∣∣∂~x∂~q
∣∣∣∣ , (88)

where |∂~x/∂~q| is the Jacobian determinant. This expression can be rewritten in terms
of the cosmological background density ρ0 as

ρ = ρ0
1

|δij − (b/a)∂fi/∂qj|
. (89)

• If the displacement field is the result of growing density perturbations, then we know
from our previous discussion of the peculiar velocity field that it must be irrotational.
Therefore, we can write it as the gradient of some scalar potential:

~f(~q) = ∇ψ(~q). (90)

It then follows that
∂fi
∂qj

=
∂2ψ

∂qi∂qj
. (91)

Therefore, the tensor defined by ∂fi/∂qj, known as the strain tensor or deformation
tensor is symmetric, allowing us to diagonalize it. After doing so, we find that

ρ

ρ0

=

[(
1− b

a
α

)(
1− b

a
β

)(
1− b

a
γ

)]−1

, (92)

where −α, −β and −γ are the three eigenvalues of the deformation tensor.



2 FORMATION OF STRUCTURE: NON-LINEAR REGIME 20

• We therefore see that in the general case where α, β and γ all have different values,
collapse occurs first along the principal axis corresponding to the largest eigenvalue. In
other words, if α is the largest eigenvalue, ρ→∞ as (b/a)α→ 1. The evolving density
field therefore first makes sheet-like structures, known as Zeldovich pancakes, that
then fragment into filaments and spherical halos.

• In the linear regime, where the terms involving α, β and γ are small, Equation 92
simplifies to

ρ

ρ0

= 1 +
b

a
(α + β + γ). (93)

Since 1 + δ = ρ/ρ0, it follows that

δ =
b

a
(α + β + γ) = − b

a
∇ · ~f. (94)

• We can also show, based on our definition of ~x, that the comoving velocity perturbation
is given by

~u =
1

a

(
~̇x−H~x

)
=

(
ḃ

a
− ȧb

a2

)
~f. (95)

With a little additional algebra one can then verify that δ and ~u satisfy the mass
conservation equation ∇ · ~u = −δ̇, as we expect for linear perturbations.

• From Equation 94, we see that the evolution of δ with time is given by the function
b(t)/a(t), since the displacement field ~f is independent of time. However, we already
know that the evolution of δ with time is given by the linear growth factor D+(t). We
therefore see immediately that

b(t)

a(t)
= D+(t). (96)

• Using this expression for b(t), we can then show that

~u =
δ̇

δ
~f, (97)

= f(Ωm)H ~f, (98)

where f(Ωm) = (a/δ)dδ/da as before. However, we also know that in the linear regime,

~u =
2f(Ωm)

3HaΩm

~g. (99)

We therefore see that
~f =

2

3H2Ωm

~g

a
, (100)

or in other words that our required displacement field is directly proportional to the
initial gravitational acceleration.
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• This relationship allows us to understand why the Zeldovich approximation works very
well for describing the formation of pancakes. Consider a flow of matter towards a dense
sheet with infinite extent perpendicular to the flow. The gravitational acceleration
due to this sheet is independent of our distance from it, and hence remains constant.
Therefore, the motion of the matter at early times, when the density perturbation is
small, remains a good predictor of its behaviour at late times, even after we are no
longer in the linear regime.

• Once the inflowing streams of matter intersect with each other, the Zeldovich approx-
imation breaks down. Formally, it predicts that the density should become infinite at
this point, whereas we know in reality that short-range gravitational interactions that
are not treated in the approximation will become dominant. Nevertheless, prior to this
event (often referred to as shell-crossing) it remains a useful guide to the behaviour
of the matter.

2.4 The Press-Schechter mass function

• Ideally, we would like to be able to determine the number density of halos of a given
mass – the halo mass function – as a function of redshift without going to all the
trouble and expense of running a large N-body simulation.

• Fortunately, we can! There is a simple analytical argument that allows us to derive
a mass function that turns out to be a reasonable approximation to the true mass
function. This argument was first formulated by Press & Schechter in 1974, and the
resulting mass function has become known as the Press-Schecher mass function.

• We start by assigning a length scale R(M) to each halo of mass M via

R(M) =

(
3M

4πρcr(z)Ωm(z)

)1/3

. (101)

(In other words, R is the radius of a uniform sphere filled with matter at the mean
density that has a total mass M).

• We next consider the density contrast smoothed on this scale R. This is defined as

δ̄R(~x) ≡
∫

d3yδ(~x)WR(~x− ~y), (102)

where WR(~x− ~y) is a suitably chosen window function.

• If the density contrast δ is a Gaussian random field, then so is the smoothed field δ̄R.
For a Gaussian random field, the probability of finding any particular value δ̄ at a
point in space ~x is given by

p(δ̄) =
1√

2πσ2
R

exp

[
− δ̄

2(~x)

2σ2
R

]
, (103)
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where σ2
R is the smoothed density variance

σ2
R = 4π

∫ ∞
0

k2dk

(2π)3
P (k)Ŵ 2

R(k), (104)

and ŴR is the Fourier transform of our window function.

• The fraction of all points that have a density contrast greater than δc (the linear density
contrast for spherical collapse) is then given by

F =

∫ ∞
δc

p(δ̄) dδ̄, (105)

=
1

2
erfc

(
δc√
2σR

)
, (106)

where erfc is the complementary error function.

• The great insight of Press & Schechter was that this number could also be identified
as the total mass fraction in halos of masses greater than or equal to M .

• Another way of thinking about this: in the unsmoothed linear density contrast field,
any points that have δ > δc correspond to gas that is now in a collapsed structure. By
smoothing the density contrast field, we filter out those points that are in structures
with scales less than R(M) or masses less than M ; hence, whatever is left must be in
structures with mass ≥M .

• The mass fraction in halos with masses in the range M,M + dM is simply ∂F/∂M .
To compute this, we use the fact that we can write ∂/∂M as

∂

∂M
=

dσR
dM

∂

∂σR
, (107)

and also use the identity
d

dx
erfc(x) ≡ − 2√

π
e−x

2

. (108)

We find
∂F

∂M
=

1√
2π

δc

σR

d lnσR
dM

exp

(
− δ2

c

2σ2
R

)
. (109)

• If we integrate this over all masses, we find we have a normalization problem:∫ ∞
0

∂F (M)

∂M
dM =

1

2
. (110)

Press & Schechter dealt with this by (somewhat arbitrarily) multiplying the mass
function by a factor of two. The actual resolution to this problem was recognized 17
years later by Bond et al. (1991, ApJ, 379, 440), and requires us to derive the mass
function in a somewhat different fashion, using the methods of excursion set theory.
However, this is outside the scope of the present course.
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• Given the correctly normalized version of ∂F/∂M , we can then compute the comoving
halo number density simply by multiplying by ρ0/M :

N(M, z) dM =

√
2

π

ρ0δc

σR

d lnσR
dM

exp

(
− δ2

c

2σ2
R

)
dM

M
. (111)

• The redshift dependence of this expression enters because σR increases as the Universe
expands and the density perturbations grow. It is therefore often convenient to write
the above Equation in terms of σR,0, the variance of the linear density field at z = 0,
and the linear growth factor D+(z). In this case, we have

N(M, z) dM =

√
2

π

ρ0δc

D+(z)σR,0

d lnσR,0
dM

exp

(
− δ2

c

2D+(z)2σ2
R,0

)
dM

M
. (112)

• To help us understand the behaviour of this mass function, let us start by considering
the simple case in which our power spectrum P (k) is a power-law function of k, i.e.
P (k) ∝ kn. In this case, σR,0 is given by

σ2
R,0 = 4πσ2

N

∫ ∞
0

k2+ndk

(2π)3
Ŵ 2
R(k), (113)

where σN is some appropriately chosen normalization factor that fixes the normaliza-
tion of the power spectrum. We often choose to express this normalization in terms of
σ8, the value of σ at z = 0 within a sphere of radius R = 8h−1Mpc.

• If we assume, for simplicity, that our window function is a top-hat in k-space, so that

ŴR =

{
0 k > 2π/R
1 k < 2π/R

(114)

then we find that

σ2
R,0 ∝

∫ 2π/R

0

k2+ndk ∝ R−3+n. (115)

Since R ∝M1/3, we therefore find that σR,0 ∝M−(3+n)/6.

• If we consider small scales, so that we can set the exponential term in our mass function
equal to one, then we find that

N(M, z) dM ∝M (n−9)/6dM. (116)

We saw in a previous lecture that P (k) ∝ k−3, and hence on small scales n = −3. We
therefore find that at the low-mass end, the mass function scales as

N(M, z) dM ∝M−2dM. (117)

• We therefore see that there are many more low-mass halos than high-mass halos.
Moreover, the mass found in each logarithmic mass bin is constant, demonstrating
that these low-mass halos do not only dominate the number counts but also represent
a significant fraction of the total available mass.
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• At the high mass end of the mass function, the exponential term generally dominates.
The presence of this term means that although, in principle, there is a non-zero prob-
ability of finding a halo of arbitrarily large mass at any given redshift, in practice the
probability soon becomes so small that the chance of finding one within the observable
Universe is tiny; i.e. we may as well consider it to be zero, for all intents and purposes.

• It is often useful to quantify the rarity of a given halo in terms of the argument of this
exponential. For instance, suppose that we are interested in a halo with a mass such
that

δc

σR,0D+(z)
= 3. (118)

Rearranging this expression, we find that

σR,0 =
1

3

δc

D+(z)
, (119)

and hence in order to form such a halo, we need a local upwards fluctuation in the
density contrast field that corresponds to a three-sigma fluctuation. We know from
numerical integration of the Gaussian distribution that such a fluctuation occurs with
a probability of around 1%, and hence around 1% of the total mass in the Universe is
to be found in regions where δ is this large or larger.

3 Gravitational lensing

• Because of space-time curvature, concentrations of mass (or other forms of energy)
deflect light towards themselves, a phenomenon known as gravitational lensing.

• Lensing comes in two main varieties: strong lensing, when the deflection is strong
enough to give rise to multiple background sources, and weak lensing, when there
is only a single image produced, albeit with some distortion of shape and change of
brightness due to the lensing.

• The key quantity that determines whether a gravitational lens (i.e. a foreground matter
concentration such as a galaxy or cluster) causes strong or weak lensing is its projected
mass surface density Σ. If Σ exceeds a critical surface density

Σcrit =
c2

4πG

Ds

DdDds

, (120)

where Ds is the angular diameter distance from the observer to the source, Dd is the
angular diameter distance from the observer to the lens and Dds is the angular diameter
distance from the lens to the source, then we have strong lensing; otherwise, we have
weak lensing.

• For lenses sources at cosmological distances, the effective distance

Deff ≡
DdDds

Ds

(121)
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is of the order of a Gpc or more, and the critical density is

Σcr ' 0.35

(
Deff

1 Gpc

)−1

g cm−2,

' 1700

(
Deff

1 Gpc

)−1

M� pc−2.

(122)

• Surface densities greater than Σcr are typically found only in highly overdense struc-
tures, such as galaxy clusters. Therefore, although strong lensing can be useful for
learning about the properties of these structures, it is of little use for learning about
the large-scale structure of the Universe. This is the domain of weak lensing, and it is
on this variety of lensing that we will focus for the rest of this lecture.

3.1 Deflection angle, convergence and shear

• In the weak lensing regime, the Newtonian gravitational potential is small (Φ � c2)
and it is possible to show that the effect of lensing by a mass distribution between us
and some distant source can be described by the following equation

~α(~θ) =
2

c2

∫ r

0

dr′
fK(r − r′)
fK(r)

∇⊥Φ[fK(r′)~θ]. (123)

Here ~θ is the angular position on the sky and ~α is the deflection angle corresponding
to that position on the sky, i.e. the angular amount by which the light-ray observed
at those angular coordinates has been deflected during its travel between the distant
source and the observer. In the integrand, fK(r) is the comoving angular diameter
distance, given by

fK(r) =


sin (r) K = 1
r K = 0
sinh (r) K = −1

(124)

where r is our comoving radial coordinate. Finally, ∇⊥Φ is the gradient of the Newto-
nian gravitational potential in a direction perpendicular to the path of the light-ray.

• The main features of this equation are easy to understand. The deflection is sensitive
only to the component of ∇Φ perpendicular to the ray because the component parallel
to the ray may change the energy of the associated photons (via gravitational redshifts
or blueshifts) but will not change their direction of propagation. The sensitivity of ~α
to the potential gradient is weighted by ratio of the angular diameter distance from
mass to source with that from observer to mass because mass concentrations close to
the observer give rise to large deflections, while those close to the source give rise to
small deflections.
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• Now, it is easy to see that the deflection angle α itself is not an observable: if all of
the light-rays coming from a distant object were deflected by the same amount, all
that would happen would be that its apparent angular position on the sky would be
different from its position in the absence of lensing. However, in this case we have no
way of knowing what its angular position would have been in the absence of lensing,
and hence no way of measuring ~α.

• From this, it should be clear that what we are actually sensitive to are changes in ~α
from one light-ray to another, as it is these that lead to changes in the images properties
compared to the no-deflection case. A key quantity in this context is the derivative of
the deflection angle with respect to the position on the sky, which is a 2 × 2 matrix
with components

∂αi
∂θj

=
2

c2

∫ r

0

dr′
fK(r − r′)fK(r′)

fK(r)

∂2Φ

∂xi∂xj
[fK(r′)~θ]. (125)

• It is convenient at this point to introduce a weight function

W (r, r′) ≡ fK(r − r′)fK(r′)

fK(r)
, (126)

allowing us to write Equation 125 in the simpler form

∂αi
∂θj

=
2

c2

∫ r

0

dr′W (r, r′)
∂2Φ

∂xi∂xj
[fK(r′)~θ]. (127)

This weight function vanishes at the observer and the source, and peaks approximately
half-way between them (or exactly half-way, in the special case of a flat Universe).

• If we take the trace of the matrix defined by Equation 125, then we find that

tr
∂αi
∂θj

=
2

c2

∫ r

0

dr′W (r, r′)
∂2Φ

∂x2
i

[fK(r′)~θ] (128)

(where we use the usual Einstein convention, so that the sum over i is implied). The
two-dimensional Laplacian in this expression can be replaced by its three-dimensional
counterpart, since the derivatives along the line-of-sight do not contribute to the inte-
gral. Therefore,

tr
∂αi
∂θj

=
2

c2

∫ r

0

dr′W (r, r′)∇2Φ. (129)

• We can now use Poisson’s equation to write the ∇2Φ in terms of the density. Since we
are working in comoving coordinates, we need the comoving form of Poisson’s equation,
which in the limit of small δ is simply

∇2Φ = 4πGρ̄δa2. (130)

We can also write this in terms of H0 and Ωm,0 as

∇2Φ =
3

2
H2

0 Ωm,0
δ

a
. (131)
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Equation 129 therefore becomes

tr
∂αi
∂θj

=
3H2

0 Ωm,0

c2

∫ r

0

dr′W (r, r′)
δ

a
≡ 2κ, (132)

where for reasons that will become clear shortly we have introduced a quantity κ known
as the convergence.

• The trace-free part of the matrix of deflection angle derivatives can be written as

∂αi
∂θj
− 1

2
δijtr

∂αi
∂θj

=
∂αi
∂θj
− δijκ ≡

(
γ1 γ2

γ2 −γ1

)
, (133)

which defines the shear components γi. Specifically, we have

γ1 =
1

c2

∫ r

0

dr′W (r, r′)

(
∂2Φ

∂x2
1

− ∂2Φ

∂x2
2

)
,

γ2 =
2

c2

∫ r

0

dr′W (r, r′)

(
∂2Φ

∂x1∂x2

)
. (134)

• Combining these results, we see that

∂αi
∂θj

=

(
κ+ γ1 γ2

γ2 κ− γ1

)
. (135)

• The convergence and the shear correspond to the two different ways in which the prop-
erties of the image are affected by gravitational lensing. The convergence corresponds
to a change in the size (and hence the brightness) of the image, with the relative
magnification being given by

δµ = 2κ. (136)

• The shear component correspond to the image distortion. For example, a circular
source with radius R will appear after lensing as an ellipse with major and minor axes

a =
R

1− κ− γ
, b =

R

1− κ+ γ
, (137)

where γ ≡ (γ2
1 + γ2

2)1/2. If the magnification is small, as is usually the case with weak
lensing, then the observed ellipticity of a circular source provides a good estimate of
the shear:

ε ≡ a− b
a+ b

=
γ

1− κ
' γ. (138)
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3.2 Power spectra

• The analysis above demonstrates that measurements of γ and/or κ provide us with
information on the second derivatives of the gravitational potential, integrated along
the line of sight. Unfortunately, this does not provide us with enough information to
allow us to reconstruct either the density field or the potential, since there are many
different ways of arranging δ and Φ that would give the same result for the integral
along the line of sight. Instead, what weak lensing allows us to do is to constrain the
statistical properties of the density field.

• To understand how the 3D statistical properties of the density field relate to the 2D
properties of the convergence and shear, we need to make use of an important relation
known as Limber’s equation. This states that if we have a density field δ and a
projection of that field g(~θ) that are related by

g(~θ) =

∫ r

0

dr′q(r′)δ[fK(r′)~θ], (139)

then provided that q(r) changes on scales much larger than δ, the power spectra of g
and δ are related by Limber’s equation:

Pg(l) =

∫ r

0

dr′
q2(r′)

f 2
K(r′)

P

(
l

fK(r′)

)
. (140)

Here, l is a 2D wave-vector which is the Fourier conjugate to the 2D position on the
sky, ~θ.

• Applying this to the case of weak lensing, we find that the power spectrum of the
convergence is given by

Pκ(l) =
9Ω2

m,0

4

H4
0

c4

∫ r

0

dr′W̃ 2(r, r′)P

(
l

fK(r′)

)
. (141)

where

W̃ (r, r′) ≡ W (r, r′)

afK(r′)
. (142)

• In practice, we usually do not know the intrinsic luminosities of the lensed galaxies
with sufficient precision to be able to determine the magnification and hence the con-
vergence. However, the image distortions cause by shear can be measured, albeit only
in a statistical sense. Fortunately, it is possible to show that

Pγ(l) = Pκ(l), (143)

and so a measure of the shear power spectrum contains information on the power
spectrum of the density fluctuations.
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3.3 Measurements

3.3.1 Survey requirements

• A fundamental problem that we have to confront if we want to measure γ is that the
galaxies that we are observing are not ideal circular sources. In general, they are (to
a first approximation) elliptical themselves, and so we need to be able to somehow
distinguish between the ellipticity induced by lensing and the intrinsic ellipticity of the
galaxies.

• If we write the intrinsic ellipticity as ε(s), then the observed ellipticity for a given galaxy
is

ε = ε(s) + γ. (144)

For a single galaxy, there appears to be no practical way to separate ε(s) and γ. How-
ever, if we observe a large number of galaxies and compute the mean ellipticity, then
we would expect the ε(s) term to average out (to a first approximation), leaving only
the mean shear:

〈ε〉 ' 〈ε(s)〉+ 〈γ〉 ' 〈γ〉. (145)

• The typical angular scale on which the cosmic shear signal is strongest is of the order of
a few arc-minutes in the ΛCDM model. For our averaging method to work, we therefore
need there to be a large number of sources per square arc-minute. Fortunately, deep
optical observations can easily recover 30 or more sources per square arc-minute, giving
us more than enough to work with.

• A major constraint on the accuracy with which we can measure 〈γ〉 is the fact that
because we average only over a finite number of galaxies, 〈ε(s)〉 is probably not exactly
zero. The intrinsic ellipticities of the faint background galaxies have a distribution
with standard deviation σε ' 0.3. Therefore, an average over N such galaxies gives a
standard error:

δε = 〈(ε(s))2〉1/2 =
σε√
N
, (146)

assuming no correlations exist between the different intrinsic ellipticities.

• We can use this to construct a rough estimate for the signal-to-noise of a cosmic shear
measurement. Suppose that we count pairs of galaxies on the sky with separations
θ±δθ. If the number density of galaxies per unit solid angle is n, then the mean number
of galaxies we expect to find with a separation in this range around a randomly selected
galaxy is just 2πθδθn, where we have assumed that δθ � θ. If our survey covers a
total solid angle A, then it will contain a total number of galaxies N ' nA, and the
total number of pairs is then approximately

Np =
1

2
2πn2Aθδθ, (147)

provided that θ2 � A. Therefore, the Poisson noise in our measurement due to the
intrinsic ellipticities will be

noise ' 2σε

n
√
πAθδθ

. (148)
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• The signal is the square root of the correlation function, which we can approximate as

ξ ' l2Pκ(l)
δθ

θ
, (149)

where θ = 2π/l. The signal-to-noise ratio is therefore

S

N
' lnδθ

√
πAPκ

2σε
=
n
√
π3APκ
σε

δθ

θ
. (150)

• To quote some representative numbers: for δθ/θ = 0.1 and θ = 0.1′, a survey size
of one square degree gives a signal-to-noise of order unity. Therefore, to measure the
shear to within 10% accuracy, we need a survey of 100+ square degrees, involving tens
of millions of galaxies. This is a major undertaking, with the time required for such
surveys being of the order of years.

3.3.2 Ellipticity measurements

• So far, we have discussed measuring the ellipticity in fairly abstract terms. However,
it is worthwhile looking in more detail at how we actually do this and at some of the
problems that can arise.

• In principle, the determination of the ellipticity of a galaxy is a simple task. We
measure the surface brightness quadrupole

Qij =

∫
I(x)xixjd

2x∫
I(x)d2x

, (151)

and find its principal axes a and b; the ellipticity then follows from Equation 138.

• In practice, there are a number of problems. First, if the galaxy is small and faint,
it may be resolved on our detector by just a few pixels. In this case, the integrals
in Equation 151 must be approximated, which inevitably introduces error into our
measurement of ε. We can avoid this problem by only looking at bright, well-resolved
galaxies, but in that case we end up throwing away much of our potential signal,
since in any magnitude-limited survey, there are many more faint galaxies than bright
galaxies.

• Another issue that must be addressed is the fact that our images of the galaxies are
distorted by turbulence in the atmosphere and by imperfections in the telescope optics.

• Atmospheric turbulence has the effect of convolving the actual angular distribution of
light from a source with a Gaussian whose width depends on the site of the telescope,
the current weather, and many other factors. Typically, the size of this Gaussian – the
seeing – is around 0.5′′–1′′. Unless the angular size of the source is much larger than
this, the atmospheric distortion has the effect of dramatically reducing the ellipticity.
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• A common way of accounting for this effect is to measure and deconvolve the so-called
point-spread function (PSF) of the telescope, ideally using a measurement of this
made at the same time as the actual observations. The PSF describes how the image
of a point-like, unresolved source (e.g. a star) appears on the detector. If the telescope
optics are even slightly astigmatic, the PSF may be anisotropic, and the degree of
anisotropy may depend on the position of the image on the focal plane.

• Systematic errors introduced by these effects can be much larger than the lensing effect
we are trying to measure, meaning that any successful measurement must account for
and remove them with a high degree of accuracy. This is a highly challenging statistical
problem that remains an active area of research.

• Finally, one additional source of spurious shear that we need to understand before we
can measure the true shear is a phenomenon known as intrinsic alignment. Previ-
ously, we assumed that the intrinsic ellipticities of individual galaxies were uncorre-
lated, meaning that an average over a large number should yield a mean of approxi-
mately zero. However, this is not quite correct. Galaxies form within the context of
a large-scale gravitational tidal field caused by the surrounding large-scale structure,
and this tidal field can lead to nearby galaxies having correlated alignments.

• Considerable work has been devoted to modelling this intrinsic alignment in sufficient
detail to allow its effects to be removed from the analysis, and it is no longer seen as
a major impediment to measurements of the lensing-induced shear.

4 The cosmic microwave background

4.1 The CMB dipole

• The first anisotropy in the CMB to be detected was the dipole caused by our motion
relative to the CMB. If we denote the velocity of the Earth relative to the CMB rest
frame by v⊕, then the Doppler shift due to our motion imprints a dipole intensity
pattern with an amplitude

∆T

T0

=
v⊕
c
, (152)

to first order in v⊕/c.

• The measured amplitude of the dipole is ' 1.24 mK, from which we can infer that
the Earth’s velocity relative to the CMB is v⊕ ' 370 kms−1. Once we account for the
Earth’s motion around the Sun, and the Solar System’s motion around the centre of
the Milky Way, we find that the Milky Way itself is moving with a higher velocity of
vMW ∼ 600 km s−1 with respect to the CMB rest frame.

• This motion of the Milky Way is caused by the gravitational attraction of the surround-
ing matter, which on scales < 100 Mpc is not distributed homogeneously. It therefore
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tells us something about our local patch of the Universe, but not about the cosmologi-
cal model itself. To learn about that, we must look at higher order anisotropies in the
CMB.

4.2 Primary anisotropies

• We can classify CMB anisotropies into two classes: primary anisotropies, which are
caused by physical processes acting at the surface of last scattering, and secondary
anisotropies, which are caused by physical processes acting during the passage of the
CMB photons from the last-scattering surface to us.

• We will not attempt in this lecture to give a complete mathematical introduction to
the production of either primary or secondary anisotropies. Instead, the aim here is to
give a brief pedagogical introduction to the major causes of anisotropies in the CMB. A
more detailed mathematical introduction can be found in the review by Hu & Dodelson
(2002, ARA&A, 40, 171).

• The basic idea underlying our theory for the production of CMB anisotropies is simple.
We assume that the cosmic structures that we see around us today were produced via
gravitational instability acting on seed fluctuations in the density field generated in
the very early Universe. Since baryons and radiation are strongly coupled prior to
recombination, if there are density fluctuations in the baryonic component there must
also be density fluctuations in the radiation component.

• Fluctuations in the dark matter component do not coupled directly to the radiation.
However, they affect it indirectly, by acting as the sources of fluctuations in the grav-
itational potential. Therefore, fluctuations in both the baryons and the dark matter
lead to fluctuations in the effective temperature of the CMB, i.e. to CMB temperature
anisotropies.

• Suppose that there were no dark matter. In that case, a fractional change in the baryon
density δρ/ρ should produce a similarly sized change in the radiation energy density.
Since the latter scales with temperature as T 4, we therefore have

δρ

ρ
' δT 4

T 4
=

4T 3δT

T 4
. (153)

Rearranging this, we see that
δT

T
' δ

4
, (154)

where δ ≡ δρ/ρ.

• In an Einstein-de Sitter Universe, density perturbations in the linear regime (i.e. with
δ < 1) grow with increasing scale factor as δ ∝ a, provided we are in the matter-
dominated regime and are considering scales larger enough that we can ignore thermal
pressure. A similar relationship holds in a Universe like our own provided that we
consider redshifts z > 1 where the effects of the cosmological constant are unimportant.
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• We therefore expect small density fluctuations at the redshift of recombination to grow
by a factor of around 1000 by the present day. Therefore, for these fluctuations to have
left the linear regime by the present day, their size at recombination must have been
δ ≥ 10−3.

• We would therefore expect that in a Universe without dark matter, the size of the
temperature anisotropies in the CMB would have been of order 10−4 or larger. This
is an order of magnitude larger than the values actually observed by COBE and later
experiments, and suggests that our simple baryons+radiation model is not compatible
with observation.

• Nevertheless, we will persist with this model for a little while longer, as the behaviour
of a pure baryons+radiation fluid gives important insight into the more complex be-
haviour that we see when we have baryons, radiation and dark matter.

4.2.1 Acoustic oscillations

• Prior to recombination, the fractional ionization of the gas is x ∼ 1. At this time, the
baryons and the photons are tightly coupled by Thomson scattering. The mean free
path (in comoving units) due to Thomson scattering is

λC =
1

neσTa
' 2.5 Mpc, (155)

which is around a factor of a hundred smaller than the Hubble radius at this time,
and so the motion of the photon fluid relative to the baryon fluid is important only
on small scales, while on large scales we can assume that the two fluids move with the
same velocity.

• To derive a zeroth-order approximation for the behaviour of our coupled baryon-photon
fluid, we make three approximations: we assume that the momentum density of the
baryons is negligible in comparison to the photons, that the background expansion of
the Universe is matter dominated, and that gravitational forces can be neglected.

• These approximations allow us to write down the governing equations for our coupled
fluid in a very simple form. First, we know that photons are conserved in Thomson
scattering, so the photon number density obeys the continuity equation

ṅγ + 3
ȧ

a
nγ +∇ · (nγvγ) = 0, (156)

where the second term is a consequence of the expansion of the Universe. Note also that
the dot here represents a derivative with respect to the conformal time η, defined as

η ≡
∫

dt

a(t)
. (157)
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• If we write the photon number density as the sum of a mean value and a (small)
perturbation, nγ = n̄γ + δnγ, then to first order in our perturbed quantities:

d

dη

(
δnγ
nγ

)
= −∇ · vγ. (158)

Note that in the absence of density perturbations, the velocity vγ = 0 (as otherwise
the Universe would not be homogeneous and isotropic).

• For a black-body radiation field, nγ ∝ T 3, so we can write the photo number density
fluctuation in terms of the temperature fluctuation Θ ≡ δT/T as:

δnγ
nγ

= 3Θ. (159)

Therefore, we have

Θ̇ = −1

3
∇ · vγ, (160)

which in Fourier space becomes

˙̂
Θ = −1

3
ik · vγ, (161)

where Θ̂ is the Fourier transform of Θ and k is the comoving wavevector.

• The other governing equation for our coupled baryon-photon fluid is the Euler equation.
In the absence of gravity, the momentum density of the fluid is altered by only two
effects: radiation pressure gradients, which generate the velocity perturbations that
accompany our density perturbations, and the expansion of the Universe, which causes
the momentum density to decrease with time, owing to the combined effects of the
reduction in the photon density and the redshifting of the individual photons. We
therefore have

d

dη

[(
ργ +

pγ
c2

)
vγ

]
= −4

ȧ

a

(
ργ +

pγ
c2

)
vγ −∇

(pγ
c2

)
, (162)

where ργc
2 is the radiation energy density and pγ is the radiation pressure.

• If we again expand to first order in perturbation theory, we obtain the expression

4

3
ργv̇γ = −1

3
∇δργ. (163)

where we have used the photon equation of state pγ = ργc
2/3 to eliminate pγ in favour

of ργ.

• Since ργ ∝ T 4, it follows that δργ/ργ = 4Θ, allowing us to write this equation as

v̇γ = −∇Θ, (164)

v̇γ = −ikΘ̂, (165)

(166)

where the second line gives the Fourier space version of the expression.
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• For convenience, we can write vγ as the product of a scalar velocity and a unit wavevec-
tor k̃, i.e.

vγ ≡ −ivγk̃. (167)

This allows us to write the Euler equation as

v̇γ = kΘ̂. (168)

• Combining this with our simplified form of the continuity equation then yields

¨̂
Θ + c2

sk
2Θ̂ = 0, (169)

where c2
s ≡ dpγ/dργ = c2/3 is the adiabatic sound-speed of our coupled fluid.

• We therefore see that in this highly simplified model, density perturbations in the
coupled fluid undergo simple harmonic oscillation. If we assume that the initial per-
turbations are adiabatic, with a finite density perturbation but no initial temperature
perturbation, then the general solution of Equation 169 can be written as

Θ̂(η) = Θ̂(0) cos(ks), (170)

where

s ≡
∫
csdη (171)

is a quantity known as the sound horizon, which is simply the comoving distance
that a sound wave can propagate in the conformal time η. The simplifying assumptions
that we have made above imply that cs does not vary during the period considered,
and hence s = cη/

√
3.

• In real space, these oscillating Fourier modes correspond to standing waves, one for
each mode. These oscillations continue until the Universe recombines and the photons
and baryons decouple. Following this, the photons interact no further, and hence the
state of the oscillation at recombination is encoded in the photon distribution.

• To be slightly more precise, what we observe as inhomogeneities in the CMB are the
projection of the 3D spatial fluctuations present at recombination onto a 2D sphere.
The mathematical details of this projection are a little involved, but for our purposes,
the main results are simply stated. A fluctuation with a physical scale λA maps onto
an angular scale θA according to

θA =
λA
Dang

, (172)

where Dang is the angular diameter distance. Moreover, if we represent our angular
fluctuations as a sum of spherical harmonics Ylm, the multipole corresponding to l is
sensitive to spatial fluctuations with comoving wavenumbers close to

k =
al

Dang

. (173)



4 THE COSMIC MICROWAVE BACKGROUND 36

• In flat space, the angular diameter distance is directly proportional to the conformal
time

Dang = arecc(η0 − ηrec), (174)

where ηrec is the conformal time at recombination and η0 is the conformal time at the
present day. Since η0 � ηrec, this simplifies to Dang = acη0, and hence the comoving
wavenumber corresponding to the multipole l is simply

k =
l

cη0

. (175)

• From Equation 170, we see that the perturbations with the largest absolute amplitude3

are those whose comoving wavenumber satisfies:

knsrec = nπ, n = 1, 2, 3... (176)

where srec is the size of the sound horizon at recombination Substituting this into our
expression for l yields:

ln = πn
cη0

srec

(177)

Moreover, since we know that srec = cηrec/
√

3, we can rewrite this as

ln =
√

3π

(
η0

ηrec

)
n. (178)

• When dealing with measurements of the CMB anisotropies, it is common to decompose
the temperature fluctuations on the sky into a sum of spherical harmonics

Θ(ñ) =
∑
l,m

ΘlmYlm(ñ), (179)

where ñ is a unit vector describing the location on the sky, and to then work in terms
of the angular power spectrum Cl, defined by

〈Θ∗lmΘl′m′〉 = δll′δmm′Cl, (180)

where the angle brackets denote averaging over the whole sky.

• Moreover, one can show that Cl is related to the 3D dimensionless power spectrum
∆2
T (k) via

l(l + 1)

2π
Cl ' ∆2

T (k), (181)

where k = l/Dang. Consequently, when you see the CMB angular power spectrum
plotted, what is often shown is l(l + 1)Cl/2π, rather than just Cl.

3The power in an observed mode scales as the scale of the amplitude, so both maxima and minima
contribute
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• The key result that our simple model of the baryon-photon fluid has lead us to is the
following: oscillations in the baryon-photon fluid will produce a series of peaks and
troughs in the power spectrum of the fluctuations, with the spacing between the peaks
determined primarily by the ratio of η0 to ηrec.

• In our simplified model, we have assumed that the expansion of the Universe is matter-
dominated throughout. In this case, η ∝ (1+z)−1/2, and so η0/ηrec = (1+zrec)

1/2 ' 33.
This leads to the first acoustic peak occurring at ln ' 180.

• A more careful calculation that accounts for the effects of radiation near zrec, the
effects of the cosmological constant at low z, and that does not assume a flat Universe
demonstrates that the exact position of the peak is sensitive to the values of several of
the cosmological parameters. Most importantly, it is sensitive to the value of Ωtot ≡
Ωm + ΩΛ, as changing this can lead to a considerable change in the angular diameter
distance.

• We can therefore use measurements of the position of the first peak in the CMB power
spectrum to constrain the geometry of the Universe. The first detections of this peak,
by the balloon-borne experiments boomerang and maxima, had insufficient precision
to provide a strong constraint on Ωtot, but the subsequent measurements by wmap and
Planck do provide strong constraints, and show that Ωtot ' 1 to within a precision
of a few percent; i.e. the Universe is very close to being flat.

4.2.2 The Sachs-Wolfe effect

• We next explore what happens if we relax some of the simplifying assumptions made
previously. We start by examining what happens if we include gravitational effects.

• Suppose that we slightly perturb the otherwise flat gravitational potential. GR tells
us that our perturbed potential Ψ acts as a perturbation of the time coordinate:

δt

t
= Ψ. (182)

• This perturbation has two important effects. First, it acts as a perturbation in the
scale factor. In the matter-dominated era, we have:

δa

a
=

2

3

δt

t
, (183)

since a ∝ t2/3 in this era. Moreover, since the CMB temperature is related to the
scale factor as T ∝ a−1, the perturbation in the potential leads to a local temperature
perturbation

Θ = −2

3
Ψ. (184)

In other words, in regions where Ψ is negative (potential wells), we have a local overden-
sity of photons and hence a local increase in the temperature. Similarly, in underdense
regions (with positive Ψ), we have a temperature deficit.
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• We therefore have two equivalent ways to think about the same set of perturbations:
we can think of them as density perturbations that generate corresponding curvature
perturbations; or we can think of them as curvature perturbations that generate density
perturbations through their effect on the scale factor.

• However, aside from its effects on the local density, the curvature also affects the
observed temperature perturbations in another way. Photons in an overdense, hotter
region are located in a potential well compared to their surroundings, and must climb
out of this potential well before we can observe them. As they do so, they undergo a
gravitational redshift leading to a second temperature perturbation of magnitude
Ψ.

• The temperature perturbation that we observe is simply the sum of the two terms,
one due to the photon overdensity and a second due to the gravitational redshift. We
therefore see that:

Θ =
1

3
Ψ. (185)

• Since the gravitational redshift has a larger effect than the photon overdensity, we see
that hot spots in the observed pattern of temperature anisotropies actually correspond
to underdense regions, while cold spots correspond to overdense regions.

• It is possible to show (although we will not do so here) that the time evolution of Ψ
satisfies the same oscillator equation as Θ did in our simplified model, i.e.

¨̂
Ψ + c2

sk
2Ψ̂ = 0, (186)

where Ψ̂ is the Fourier component of Ψ corresponding to wavenumber k. Therefore,
we have the same formal solution for Ψ̂ as we did for Θ̂, namely

Ψ̂(η) = Ψ̂(0) cos(ks), (187)

and the same phenomenology, i.e. the same series of acoustic peaks.

• On very large scales, k is small and cos(ks) ∼ 1. In this limit, we therefore see that
Ψ̂(η) ' Ψ̂(0), and hence that the perturbations that we observe are directly probing the
initial curvature fluctuations. For historical reasons, we often talk about these large-
scale perturbations as being generated by the Sachs-Wolfe effect, while ascribing the
smaller-scale perturbations to the effects of acoustic oscillations, but as we have
seen in this treatment, the physical processes are the same in both cases, and so this
is a rather arbitrary distinction.

4.2.3 Baryon loading

• The next improvement we can make to our treatment is to account for the effects of
the baryon momentum. Baryons enhance the momentum density of the coupled fluid
by a factor

R =
pb + ρbc

2

pγ + ργc2
. (188)



4 THE COSMIC MICROWAVE BACKGROUND 39

If we assume that the baryons are non-relativistic, so that pb ' 0, then we can write
this in terms of Ωb,0 and Ωr,0 as

R =
3

4(1 + z)

(
Ωb,0

Ωr,0

)
. (189)

Substituting in approximate values for Ωb,0 and Ωr,0, we find that R ∼ 700/(1 + z),
and hence is of order unity at recombination.

• Including the baryons has no effect on the photon density continuity equation, but
does change the Euler equation, which becomes

d

dη

[
(1 +R)

(
ργ +

pγ
c2

)
vγ,b

]
=− 4

ȧ

a
(1 +R)

(
ργ +

pγ
c2

)
vγ,b −∇

(pγ
c2

)
− (1 +R)

(
ργ +

pγ
c2

)
∇Ψ, (190)

where vγ,b is the momentum-weighted velocity of the coupled fluid.

• Using this Equation and the continuity equation, It is possible to show that the per-
turbations still satisfy an oscillator equation. However, in the presence of baryons, the
sound speed of the oscillations is slightly different,

c2
s =

c2

3(1 +R)
, (191)

meaning that the first acoustic peak is shifted to higher l by a factor
√

1 +R, corre-
sponding to around a 30% change.

• In addition, the additional gravitational attraction of the baryons deepens the potential
wells and leads to greater gravitational redshifting of the photons. The effect is to
increase the height of the acoustic peaks that correspond to compressions (i.e. the
odd-numbered peaks) and to decrease the height of the even-numbered peaks.

• We can therefore use the relative height of the acoustic peaks in the CMB power
spectrum to constrain R and hence Ωb,0 (since Ωr,0 is already well constrained). The
value for Ωb,0 that we obtain in this way agrees very well with the value that we obtain
from nucleosynthesis, providing further evidence that our basic cosmological picture is
consistent.

4.2.4 Doppler effect

• Since the baryon-photon fluid is moving relative to the observer, we might expect to
see temperature fluctuations due to an additional effect, the Doppler effect. Regions
where the fluid is moving away from us should give rise to redshifted photons and
hence lower temperatures, while regions where the plasma is moving towards us will
give rise to blueshifted photons and hence higher temperatures.
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• A simple estimate of the size of this effect suggests that it should be rather large. We

know that in our simplified model, vγ ∝ ˙̂
Θ/k, and we know also from our solution for

Θ̂ that
˙̂
Θ ∝ kcΘ̂. Finally, we expect the size of the temperature perturbations that

are generated by the Doppler effect to be proportional to vγ/c.

• Putting this all together, we see that the size of the temperature perturbations due to
the Doppler effect is in principle comparable to the size of the temperature perturba-
tions generated by the overdensity itself.

• However, there is one important difference in the behaviour of the Doppler effect term
compared to that of the overdensity term. With the Doppler effect, we only see a
significant signal when we are looking in a direction that is close to that of the ve-
locity: motion in the plane of the sky has no effect on the signal we see, only motion
perpendicular to that plane.

• In addition, if we think about the behaviour of our fluid as it falls into a potential well,
it is easy to see that we will generally have motions both towards and away from us,
whose effects on Θ will largely cancel.

• This directional dependence leads to the Doppler effect contribution to the anisotropies
and the observed power spectrum being strongly smoothed out in k-space. The ob-
served pattern of peaks is therefore still dominated by the acoustic effects discussed
above, and the Doppler term merely contributes some additional, smoothly-distributed
power.

4.2.5 Damping

• One final important effect that we need to include in our model is damping. So far,
we have treated the baryons and the photons as a perfectly coupled fluid. On large
scales, this is a reasonable approximation, but this description breaks down on scales
comparable to the Thomson scattering mean free path.

• On small scales, CMB photons undergoing repeated scatterings execute a random walk.
After N scatterings, the average photon has diffused a distance

λD =
√
NλC, (192)

where λC is the Thomson scattering mean free path. Since the mean number of scat-
terings that a given photon undergoes is

N =
cη

λC

, (193)

we see that
λD =

√
cηλC. (194)
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As a fraction of the sound horizon, this is:

λD

cηrec

=

√
3λC

cηrec

, (195)

which is around a few percent. We therefore expect features in the power spectrum at
l ∼ 103 and above to be strongly affected by damping.

• The effect of this damping, often referred to as Silk damping, is to exponentially
suppress features in the power spectrum at large l, corresponding to the acoustic peaks
with n > 3.

4.3 Secondary anisotropies

• The primary anisotropies discussed in the previous section are all generated prior to
cosmological recombination. At this time, the fluctuations that we are dealing with
are small, and can be treated using the tools of linear perturbation theory. Therefore,
even though a detailed mathematical treatment can become rather complex, we can in
principle predict the pattern of anisotropies to within a very high degree of precision.

• The same cannot be said for the secondary anisotropies. These are generated by
physical processes occurring after recombination, and therefore often probe the non-
linear regime of structure formation, which we cannot model so accurately.

• There are two main ways in which secondary anisotropies can be introduced into the
CMB. The first of these involves gravitational redshifting of the CMB photons. Suppose
that a photon propagating to us passes through a deep potential well. As the photon
moves down into the potential well, it will be blueshifted, while as it climbs out again,
it will be redshifted. If the potential well is static, then there is no net effect: the
blueshifting and redshifting exactly cancel. However, if the potential is varying with
time, then the amount of blueshifting and redshifting need not exactly agree, leading
to a net change in the energy of the photon.

• Therefore, changes with time in the gravitational field through which the CMB photons
are propagating lead to new anisotropies in the photon temperature distribution. While
the overdensities and underdensities responsible for this effect remain in the linear
regime, we refer to is as the integrated Sachs-Wolfe effect. On the other hand,
when we are dealing with highly non-linear structures (e.g. galaxy clusters), we refer
to the same effect as the Rees-Sciama effect.

• We can quantify both forms of the effect with the help of large N-body simulations.
These show that at low l, the contribution made by the ISW or RS effects is orders of
magnitude smaller than the contribution made by the primary anisotropies. However,
at large l the primary anisotropies are exponentially damped, while the ISW and RS
effects are not. We therefore expect them to become important for l ∼ 5000 and above.
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• The other main source of secondary anisotropies is Compton scattering of the CMB
photons by rapidly moving electrons. Although most CMB photons scatter for the last
time at the surface of last scattering, the probability of subsequent scattering is not
completely zero, and so a small fraction of photons scatter at later times.

• If the scattering is elastic (i.e. Thomson scattering), then the net effect is to partially
damp the primary anisotropies, by mixing together photons from hot regions and cold
regions. However, if the scattering is inelastic (i.e. Compton scattering), so that the
CMB photons either gain or lose energy, then new anisotropies can be created.

• The general name for this process is the Sunyaev-Zel’dovich effect, or SZ effect for
short, and it comes in two varieties. To create significant anisotropies, we need rapidly
moving electrons. If the electron velocities are high because the gas is very hot, then
we have the thermal SZ effect; on the other hand, if the velocities are high because
of some bulk flow of the ionized gas, then we have the kinetic SZ effect.

• In general, the only places where we find sufficient amounts of hot gas to create de-
tectable anisotropies via the thermal SZ effect are galaxy clusters. The angular size of
these clusters on the sky is small, so the thermal SZ effect only plays a role at very
high l. Moreover, given a detector with sufficiently high angular resolution, individual
clusters can be detected, allowing them to be masked out of the larger-scale maps.

• The kinetic SZ effect is generated on larger scales, by the infall of ionized gas into
overdense regions such as clusters or superclusters of galaxies. It’s importance can be
quantified using numerical simulations. As with the RS effect, the kinetic SZ effect
is unimportant compared to the primary anisotropies at values of l less than a few
thousand, but can become significant at very high l.

4.4 Polarization

• For any given patch of the CMB, we can measure not only its intensity, but also its
polarization. In a perfectly homogeneous and isotropic Universe, the mean polarization
everywhere would be zero, i.e. we would expect to find equal numbers of photons with
both different polarization directions.

• In an inhomogeneous Universe, this is no longer true, for a reason that we will now
explain. We start with the fact that Thomson scattering is polarization sensitive, and
can produce polarized radiation from unpolarized radiation. Scattering of an unpolar-
ized beam of light into our line of sight produces a polarized signal, with the details of
the net polarization depending on the direction of the incoming beam relative to our
line of sight. If the electrons responsible for the scattering are uniformly illuminated,
then the effect cancels out. However, if the incoming radiation is anisotropic, then the
net effect is no longer zero.

• In the case of the CMB, we therefore expect a polarization signal whose strength is
sensitive to the size of the anisotropies in the CMB. Detailed calculations show that the
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polarized signal should have a strength which is roughly 10% of that of the unpolarized
anisotropies, i.e. around 10−6.

• The tiny size of this polarization makes it difficult to detect, but a number of recent
CMB experiments have been able to detect it, providing further confirmation of our
picture of the CMB’s origin. planck has the sensitivity to revolutionize this topic,
but has not yet released any results regarding the polarization of the CMB, as the
planck collaboration is still engaged in fully understanding all of the possible sources
of systematic error in the measurement.

• In addition to this intrinsic polarization, there is an additional source of polarization
that is somewhat easier to detect. Once the Universe becomes reionized, at a redshift
z ∼ 10, there is a small probability that CMB photons will scatter off the electrons
in the IGM. The optical depth due to this scattering is relatively small, τ ∼ 0.1, but
is large enough to affect the CMB. It acts to damp the anisotropies, but on its own,
this is difficult to distinguish from a change in the initial amplitude of the perturba-
tions. However, it also introduces a net polarization, for the same reason as above.
Detecting this polarization therefore allows one to constrain τ and hence the redshift
of reionization.

4.5 Foregrounds

• It took 20+ years of increasingly sensitive measurements to go from a detection of the
CMB itself to a detection of CMB anisotropies beyond the dipole. It then took another
10+ years until we could first start to map out the CMB power spectrum in any detail,
first with balloon-borne experiments such as boomerang or maxima, and then with
the launch of the wmap satellite.

• Why did it take so long? The extremely small size of the anisotropies means that in
order to measure them, our instruments need to be extremely well calibrated. Relative
temperature errors between one part of the sky and another must be made smaller than
one part in 105. In addition, foreground contamination must be removed with a
similar level of accuracy.

• What are possible sources of foreground contamination? Basically, any present-day
source that emits microwave photons, or any higher redshift source that emits photons
that by now have red-shifted into the microwave regime.

• Foreground sources can be grouped into two main types: point sources and diffuse
sources. Important examples of point sources include high-redshift infrared-bright
galaxies, galaxy clusters (which affect the CMB through the Sunyaev-Zel’dovich effect)
and minor planets in our own Solar System. Important examples of diffuse sources
include synchrotron emission from relativistic electrons, bremsstrahlung from ionized
gas, and thermal dust emission.
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• Point sources are relatively easy to deal with. The sources responsible (galaxy clusters,
high-z galaxies etc.) can be identified in separate surveys, allowing one to identify
which parts of the sky have point source contamination. These regions can then simply
be excluded from the subsequent analysis.

• Diffuse emission is more of a challenge to deal with. There are two main strategies
that are used to mitigate their effect. First, we typically observe CMB anisotropies
at frequencies where the foregrounds are least important. This works because the
frequency dependence of the foregrounds is generally very different from that of the
CMB. For example, thermal dust emission can be represented with a modified black-
body spectrum

Iν = τν0

(
ν

ν0

)β
Bν(ν, Td), (196)

where τν0 is the dust optical depth at the reference frequency ν0. Typically, Galactic
dust has a temperature of around Td ∼ 20K, and so dust emission peaks at a wavelength
of around 200 µm, significantly shorter than the peak wavelength of the CMB spectrum,
which is located at λ ∼ 2 mm.

• At long wavelengths, synchrotron emission from relativistic electrons interacting with
the Galactic magnetic field dominates the microwave sky. This has a power-law spec-
trum that behaves approximately as Iν ∝ ν−1.5, and hence becomes much less impor-
tant as we move to shorter wavelengths.

• Fortunately, between these two sources of emission, there is a relatively clear window,
ranging from 30–200 GHz, and for this reason studies of CMB anisotropies generally try
to focus on this window. Nevertheless, some foreground contamination remains even
within this window. To deal with this contamination, the usual strategy is to observe
the CMB at a range of different frequencies. Since the frequency-dependence of the
thermal dust emission and the synchrotron emission both differ from that of the CMB
emission, by producing appropriately weighted sums and differences of our different
measurements, we can remove the contamination, leaving only the CMB signal.

• Finally, an important point to bear in mind is that although foregrounds are gener-
ally “noise” as far as cosmologists are concerned, they actually contain considerable
astrophysical information and can be of great interest in their own right. For example,
the planck CMB maps have been used to construct all-sky maps of CO emission in
the lowest three rotational emission lines, which are of great interest to those of us
studying the Galactic ISM.

5 Galaxy clustering

5.1 Motivation

• The CMB gives us information on density perturbations while they’re still in linear
regime, and hence (relatively) easy to treat However, small-scale modes in the den-
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sity power spectrum are strongly affected by damping due to electron scattering in
foreground, other sources of foreground noise Therefore, the CMB primarily gives us
information on the largest scale modes, down to scales of the order of 10−3 times the
Hubble radius.

• These large-scale modes correspond to spatial scales of order 10 Mpc at the present
day. Studying clustering in the galaxy distribution on these scales therefore provides
a useful check on the CMB results.

• In addition, the growth of clustering depends on the growth factor D+, which is sen-
sitive to ΩΛ, while the CMB gives no direct information on Λ, since its contribution is
negligible at z ∼ 1100.

• Furthermore, we can probe smaller scales with galaxy clustering than with CMB,
allowing us to test the CDM model over a wider range of scales.

5.2 Two-point correlation function

• We can define a correlation function for the density field as

ξ(y) ≡ 〈δ(~x)δ(~x+ ~y)〉 (197)

where the average extends over all spatial positions ~x and orientations of ~y; because of
isotropy, ξ depends only on the magnitude of ~y, and not its orientation.

• By writing δ(~x) and δ(~x + ~y) in terms of their Fourier transforms, we can derive an
expression for ξ in terms of an integral over the power spectrum P (k):

ξ(y) = 4π

∫
k2dk

(2π)3
P (k)

sin ky

ky
. (198)

In other words, ξ(y) is completely determined once P (k) is known.

• However, this is the correlation function of the density field, which is not directly
observable – if dark matter dominates, we can infer it only from its effects on the
luminous matter. We therefore want to know how to relate the correlation function of
the dark matter to the correlation function of something that we can observe, such as
the number density of galaxies or galaxy clusters.

• The form of ξ written above assumes that δ is a continuous field, which is reasonable
when dealing with the density field. On the other hand, galaxies are clearly individual
objects – it doesn’t make sense in this context to talk about half a galaxy. So how do
we define a correlation function for an inherently integral object such as a galaxy?

• Answer: work in terms of probabilities, which can still be continuous. Define the two-
point correlation function ξ(r) to be the excess probability for finding a neighbour
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at a distance r from a given galaxy. In other words, we write the probability for finding
a pair of objects in the small volume elements dV1 and dV2, separated by r, as

dP = n̄2
gal[1 + ξ(r)]dV1dV2, (199)

where n̄gal is the mean number density of galaxies

• If galaxies are randomly distributed, then the probability of finding a galaxy in the
volume element dV1 is

dP1 = n̄galdV1, (200)

the analogous expression for volume element dV2 is

dP2 = n̄galdV2, (201)

and hence

dP = dP1dP2 (202)

= n̄2
galdV1dV2, (203)

demonstrating that ξ(r) is zero for a random distribution.

• If we have a number density of galaxies that is directly proportional to the density
field, i.e.

ngal(~x) = Aρ(~x), (204)

where A is a constant of proportionality, then we can write dP as

dP = A2 〈ρ(~x)ρ(~x+ ~r)dV1dV2〉 , (205)

where the average is over all positions ~x and orientations of ~r. We can use the fact
that ρ(~x) = [1 + δ(~x)] ρb, where ρb is the background density, to write this expression
as

dP = A2ρ2
b 〈[1 + δ(~x)] [1 + δ(~x+ ~r)]〉 dV1dV2 (206)

= n̄2
gal 〈(1 + δ(~x) + δ(~x+ ~r) + δ(~x)δ(~x+ ~r)〉 dV1dV2. (207)

Mass conservation implies that the spatial average of the density contrast, 〈δ〉, must
vanish, and so we can reduce this to:

dP = n̄2
gal [1 + 〈δ(~x)δ(~x+ ~r)〉] dV1dV2 (208)

Now, 〈δ(~x)δ(~x+ ~r)〉 is just the correlation function of the density field, and so we see
that in this simple case, where the number density of galaxies just traces the underlying
density field, the two-point correlation function of the galaxies on a scale r is just the
same as the two-point function of the density field.

• In general, however, the number density of galaxies is not directly proportional to the
underlying density field – galaxies are a biased tracer of the density.
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• Before going on to look at this idea in more detail, we should also note that we can
define a function that is closely related to the two-point correlation function that is
useful when we want to compare different classes of objects

• We define the cross-correlation function ξab of two different classes of objects a and
b as

dP = n̄an̄b [1 + ξab(r)] dV1dV2, (209)

where n̄a and n̄b are the mean number densities of objects from class a and class b,
respectively. We can use this cross-correlation function to quantify e.g. the tendency
to find more galaxies in regions close to galaxy clusters than in the field.

5.3 Galaxies as peaks in the density field

• Galaxies form inside dark matter halos, which themselves represent regions in the
underlying density field in which the evolution of the density perturbations has become
strongly non-linear

• In fact, dark matter halo represent peaks, i.e. local maxima, of the underlying density
field

• If the underlying density field is a Gaussian random field, then we can solve for various
interesting quantities, such as the mean number density of local maxima.

• The maths involved is rather time-consuming (see Bardeen et al. 1986 for the full
details), but the end result is that for high peaks (i.e. peaks significantly higher than
the density variance), the number density of peaks with overdensities greater than
ν ≡ δ/σ can be written as

npk(> ν) ∝ ν2 exp

(
−1

2
ν2

)
(210)

Note the similarity of this expression to the Press-Schechter mass function

N(M)dM =

√
2

π

ρδc

σ

∣∣∣∣d lnσ

dM

∣∣∣∣ exp

(
− δ2

c

2σ2

)
dM

M
, (211)

which we can write in the form

N(M) ∝ νc exp

(
−1

2
ν2

c

)
, (212)

where νc = δc/σ.

• If galaxies and clusters correspond to peaks in the underlying density field, then this
implies that they will be inherently more clustered than the underlying density.
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• A simple picture that allows us to see this is known as the peak-background split.
We conceptually decompose the density field into short wavelength terms, correspond-
ing to the peaks plus terms of much longer wavelength, which modulate the peak
number density.

• If there is some threshold density ν for the formation of galaxies, then this will be easier
to reach in regions where the long wavelength modes contribute positively rather than
negatively.

• It is unclear a priori exactly what threshold is appropriate, but if galaxies/clusters are
to be identified with peaks, then this implies that νth ≥ 1.

• Hence, even if galaxies & clusters trace underlying mass distribution, we expect them
to be more clustered than the mass.

• We can use the peak-background split to estimate the effect on the correlation func-
tion, provided we’re dealing with scales where linear evolution can still be assumed
(e.g. clustering of galaxy clusters; clustering of galaxies strongly affected by non-linear
effects).

• In regions where long wavelength modes contribute positively, we can treat this as a
lowering of the effective threshold for collapse:

νc,eff = νc −
δbk

σ
(213)

where δbk is the contribution from the long wavelength modes (the “background”).

• To compute effect of this on the halo number density, consider the number of halos of
a given mass M to be a function of the collapse threshold νc, and Taylor expand to
first order:

NM(νc,eff) = NM(νc)−
δbk

σ

dNM

dν
(214)

= NM(νc)

[
1− δbk

σ

1

NM(νc)

dNM

dν

]
. (215)

In the high peak limit, we have d lnNM(νc)/dν ' −νc, and hence the equation above
becomes

NM(νc,eff) = NM(νc)

[
1 +

νcδbk

σ

]
. (216)

This is equivalent to a perturbation in the number density of the form

δn

n
' νcδbk

σ
, (217)

and since the two-point correlation function scales as the square of this, we finally
conclude that the correlation function of the peaks can be written in terms of the
correlation function of the mass as

ξpeak(r) ' ν2
c

σ2
ξmass(r) (218)
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[NB. This assumes we’re considering scales r that are large enough that we’re still in
the linear regime].

• More generally, the correlation function of a peak with height ν (which need not be
νc) is given, in the high-peak limit, by

ξpeak(r) ' ν2

σ2
ξmass(r) (219)

• This difference between the correlation function of the peaks and the background is
often referred to as bias. If galaxies form only in the peaks, they are then a biased tracer
of the mass distribution This is often quantified in terms of a linear bias parameter b,
defined such that

ξgal = b2ξmass (220)

Note that b need not be the same for all classes of objects!

5.4 Non-linear clustering

• On the very largest scales, the distribution of the richest galaxy clusters can still be
well-described by linear theory.

• On smaller scales, linear theory breaks down and evolution of density field becomes
highly non-linear. Nevertheless, there are various techniques we can use to model the
evolution of ξ(r) in the non-linear regime

• Consider a simple toy model for the distribution of galaxies: we place all galaxies
in collapsed, virialized clusters, and treat the clustering of these clusters using linear
theory, as above

• In this model, correlation function on small scales is dominated by signal coming from
clusters. If clusters have very steep, power-law profiles ρ ∝ r−η, then most galaxies
lie near the center of clusters and we can write the correlation function as ξ(r) ∝ r−γ,
where γ = η. [To see this, consider a galaxy lying at the center of the cluster. The
probability that there is a second galaxy at a distance r is proportional to the number
density of galaxies at that r, i.e. it is proportional to ρ(r). The correlation function for
that galaxy therefore falls off as ρ(r). But if most of the galaxies are in the cluster centre,
then the same is true for most galaxies, and hence the overall correlation function just
scales as the density].

• In the more general case, it is possible to show that the relationship between γ and η
is given by γ = 2η − 3 for η in the range 3/2 < η < 3.

• In any case, critical point is that small-scale behaviour of ξ is determined directly by
the density profile of the larger-scale objects (in this case, the galaxy clusters)
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• How does ξ evolve with time in this model? The hypothesis of stable clustering
states that although the separation of clusters will change as the universe expands,
their internal structure will not (i.e. in this approximation, we ignore the fact that the
clusters may be growing with time).

• In this approximation, overdensity of cluster with respect to background evolves as (1+
z)3, but cluster size fixed in proper coordinate, meaning that if we consider correlation
function at some fixed comoving coordinate, we will probe different length scales within
the cluster.

• Putting these two effects together, and assuming that the proper correlation function
within the clusters scales as ξ(r) ∝ r−γ, we find that the comoving correlation function
evolves with redshift as

ξ(x, z) ∝ (1 + z)γ−3 (221)

• In the linear regime, we have instead

ξ(x, z) ∝ D2
+(1 + z)−2 (222)

• The linear and non-linear regimes must match at the scale of quasi-linearity, r0,
defined by ξ(r0) = 1, and must agree on how this scale evolves with redshift.

• Linear theory gives r0 ∝ (1 + z)−2/(neff+3), where neff is the effective index of the power
spectrum on the relevant scales, while stable clustering implies r0 ∝ (1+z)−(3−γ)/γ. By
equating the indices, we can solve for the index γ of the non-linear correlation function,
obtaining

γ =
3neff + 9

neff + 5
. (223)

• Observations suggest that γ = 1.8, implying that on the scale of galaxy clusters,
neff ∼ 0.

5.5 Halo model

• We can generalize the ideas outlined above, and construct a model known as the halo
model. The basic idea is very simple: we assume that the small-scale clustering of the
dark matter is determined by the density profile within halos, and that the large-scale
clustering is determined by the clustering of halos.

• However, not every halo will contain the same number of galaxies; not every halo has
same mass. We therefore introduce a quantity P (N |M) that gives the probability that
a halo of mass M holds a number of galaxies N .

• If we combine this with a model for the spatial and velocity distribution of the galaxies
within the halo, then we can solve for whatever clustering statistics we want. In
practice, these quantities are usually constrained by numerical simulations.
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• Typically, we assume that P (N |M) is solely a function of M – i.e. the number of
galaxies living in a given halo is just a function of the size of the halo. This is probably
not true for any individual halo, but we can hope that it’s true in an average sense
(i.e. that history effects average out).

• Testing the halo model is an important area of research in cosmology right now.

5.6 Redshift-space effects

• Even if we can relate the correlation function of galaxies to the correlation function of
the underlying matter distribution, we’re then immediately faced with another prob-
lem: we cannot measure ξgal(r).

• The correlation function is defined in terms of an average over space, but we don’t
know the true spatial positions of the galaxies we observe. Instead, the positions of
the galaxies are defined in terms of two angular coordinates (the angular position on
our sky) and a redshift.

• To convert from redshift to radial distance (and hence spatial position), we use Hubble’s
law. However, this does not give us exact positions, because of the distorting effects
of the peculiar velocities of the galaxies.

• Consider a galaxy at a radial distance r. According to Hubble’s law, it has a velocity
v = Hr (in the low-redshift limit), and an associated redshift which we shall call zH .
If this galaxy has a peculiar velocity vpec along our line of sight to it, then the redshift
we actually measure will be given by

1 + zobs = (1 + zH)
(

1 +
vpec

c

)
(224)

• If the peculiar velocities were randomly distributed, this would simply add a noise term
to our redshift determinations, and we could deal with the problem simply by making
our galaxy sample sufficiently large

• However, in practice this doesn’t work, because the distribution of peculiar velocities is
not random. As we have already seen, density and velocity perturbations are correlated,
and so the effect of the peculiar velocities is to create a systematic distortion of the
clustering pattern observed in redshift space compared to the pattern in real space.

• Fortunately, the close relationship between density and velocity perturbations makes
it easy to account for the effects of the latter in our analysis, at least in the linear
regime.

• Suppose that we’re dealing with a distant region of space, so that the small angle
approximation holds, and our radial distortions can be considered as occurring along
a single Cartesian coordinate axis. Then we can use the Zel’dovich approximation to
write the peculiar velocity as

~u = Hf(Ωm)~f, (225)
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where ~f is the displacement field and f(Ωm) ' Ω0.6
m .

• Using the Zel’dovich approximation, we can write our apparent position as a function
of ~r and ~u:

~rapp = ~r +
1

H
(~̂r · ~u)~̂r (226)

= ~r +
µu

H
~̂r, (227)

where µ is the cosine of the angle between the velocity vector and the line of sight, i.e.

µ = ~̂r · ~̂k for a plane wave disturbance moving in the ~k-direction.

• Now consider a plane-wave disturbance in the ~k direction, producing a displacement
field ~f parallel to ~k. This produces an apparent displacement

~x+ f(Ω)µx~̂r, (228)

and the component of this along the wave-vector is

x+ f(Ω)µ2x. (229)

In the framework of the Zel’dovich approximation, it is possible to show that the
amplitude of the (apparent) density perturbation produced by this wave mode, δk, is
proportional to the displacement, i.e.

δk,true ∝ x (the true displacement along the wave) (230)

and hence
δk,app ∝ x+ f(Ω)µ2x. (231)

In other words, the apparent size of the density fluctuation is increased by a factor
1 + f(Ω)µ2, i.e. the fluctuation in redshift space, δs is related to the fluctuation in real
space, δr, by:

δs =
[
1 + f(Ω)µ2

]
δr. (232)

• If the fluctuation in the number of galaxies (i.e. the light) is related to the fluctuation
in the mass by some linear bias term, as argued above, then we can write the density
perturbation in the light in redshift space as

δlight
s = bδmass

s = δmass
s + (b− 1)δmass

s . (233)

The rearrangement emphasizes that there are two physically distinct contributions
to δlight

s – one coming from dynamically generated density fluctuations, and which is
sensitive to peculiar velocities, and a second which is due to the inherent clustering of
the density peaks, and which is not affected by the peculiar velocities
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• Therefore, in real space we have

δlight
r = δmass

r

[
1 + f(Ω)µ2

]
+ (b− 1)δmass

r (234)

= δlight
r

[
1 +

f(Ω)µ2

b

]
(235)

= δlight
r

[
1 + βµ2

]
. (236)

where in the last line, we have defined a new parameter β ≡ f(Ω)/b.

• The foregoing analysis only applies in the linear regime. In the non-linear regime, the
dominant effect is due to the virial motions of galaxies within clusters.

• This gives rise to an effect known as the finger of God

• Galaxies in the cluster that are moving away from us (e.g. falling in towards the cluster
center of mass) have a large peculiar velocity away from us, and hence pick up a large
peculiar redshift. On the other hand, galaxies at the back of the cluster that are falling
in will have large peculiar velocities pointed towards us, and hence pick up blueshifts,
thereby making them appear to be at lower redshifts.

• The effect is to distort the shape of the cluster in redshift space, elongating it along
the line of sight.

• Cluster velocity dispersions are large, and so in the earliest redshift surveys (which sur-
veyed only quite nearby volumes of the universe), this distortion lead to a pronounced
elongation of each cluster, with all of the elongations apparently pointing at Earth!
The first time this phenomenon was seen, it was humourously referred to as the “finger
of God” pointing at us, and the name has since stuck.

• The influence of the “finger of God” effect on the redshift-space fluctuations can be
approximately corrected for by damping each Fourier mode according to

δ̂k → δ̂k
(
1 + k2µ2σ2

)−1/2
, (237)

where σ is the velocity dispersion of the cluster.

• Combining this with the linear term, we find that the ratio between the power spectrum
as measured in redshift space and its value in real space is simply

Ps
Pr

=
(1 + βµ2)2

(1 + k2µ2σ2)
(238)


