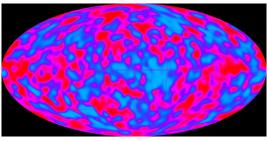
cosmic microwave background physics

Heraeus summer school on cosmology, Heidelberg 2013

Centre for Astronomy Fak<mark>ultät für Physik und Ast</mark>ron<mark>omie, Universität Heide</mark>lberg

August 23, 2013

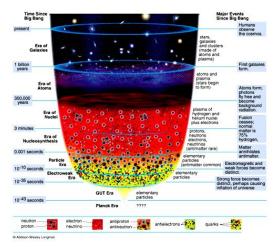


Björn Malte Schäfer

cosmic microwave background

source: COBE observations

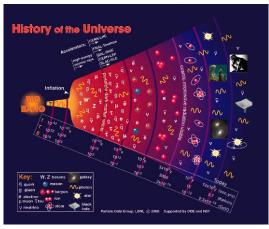
- the Universe is filled with radiation corresponding to a temperature of 2.726K
- small fluctuations of the temperature of the sky of order 10⁻⁵
- radiation from the formation of the first atoms


thermal history of the universe

- temperature of fluids drop while universe expands
- 2 important stages

 - temperature is high enough to allow nuclear reactions \rightarrow big bang nucleosynthesis ($z \simeq 10^{10}$)

 - 2 temperature is high enough to ionise hydrogen \rightarrow cosmic microwave background ($z \simeq 10^3$)


thermal history of the universe: overview

source: Addison-Wesley

СМВ

thermal history of the universe: particle interactions

source: particle data group

СМВ

temperature and Hubble expansion

- Hubble expansion is an **adiabatic** process $\delta Q = 0$
- adiabatic equation: $V^{\kappa-1}T = \text{const}$ with adiabatic index $\kappa \equiv c_p/c_V$
- early times: universe is filled with photons $\kappa = 4/3$ (relativistic gas)

$$T \propto V^{-1/3} \propto a^{-1} \tag{1}$$

• late times: universe is filled with (dark) matter $\kappa = 5/3$ (classical gas)

$$T \propto V^{-2/3} \propto a^{-2} \tag{2}$$

Planck-spectrum for photons

 photons in thermodynamic equilibrium are characterised by the Planck-spectrum

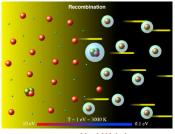
$$n(p,T) = \frac{g}{(2\pi\hbar)^3} \int_0^\infty \mathrm{d}p \frac{4\pi p^2}{\exp(\epsilon(p)/k_B T) - 1}$$
(3)

- Planck-spectrum depends only on temperature
- from the number density *n*(*p*, *T*) of photons we can compute number, energy and pressure by integration

$$n_{\gamma} = \frac{g_{\gamma}\zeta(3)}{\pi^2} \left(\frac{k_B T}{\hbar c}\right)^3, u_{\gamma} = \frac{g_{\gamma}\pi^2}{30} \frac{(k_B T)^4}{(\hbar c)^3}, p_{\gamma} = u_{\gamma}/3$$
(4)

- there are two polarisation states, $g_{\gamma} = 2$
- pure magic: $u_{\gamma} \propto a^{-4}$ (dilution and redshift), and at the same time: $u \propto T^4$, so $T \propto a^{-1}$ as predicted from the adiabatic equation

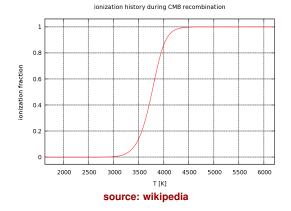
first atoms form



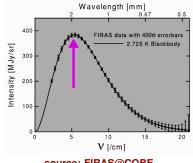
source: science kids

- at high temperatures, the reaction p + e[−] ↔ H + γ proceeds in both directions
- as the Universe expands, the temperature drops because of adiabatic cooling
- at low temperatures, the reaction only proceeds in the →-direction and atoms form

• this happens at $\sim 10^4 {\rm K}$ roughly 300000 years after the big bang $_{\rm Dorn \ Malte \ Schäfer}$


photon propagation

source: Ned Wright


- while the Universe is hot, all atoms are ionised: photons scatter off electons and can't propagate
- Universe cools and atoms form: photons can travel freely and the Universe becomes transparent
- we see this radiation redshifted by 1000 today as the microwave background

formation of atoms

- fraction of neutral atoms is a steep function of temperature
- while the Universe cools down, the atoms form really fast

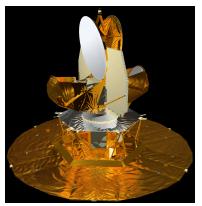
cosmic microwave background

source: FIRAS@COBE

- · atoms were produced in thermal equilibrium
- photons should follow a Planck-distribution
- redshifted by 1000 since then, from optical to microwave

Björn Malte Schäfer

COsmic Background Explorer



source: NASA

Björn Malte Schäfer

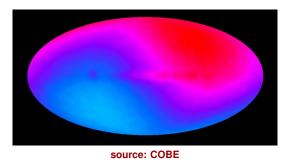
Wilkinson Microwave Anisotropy Probe

source: NASA

WMAP-satellite

Björn Malte Schäfer

Planck-surveyor



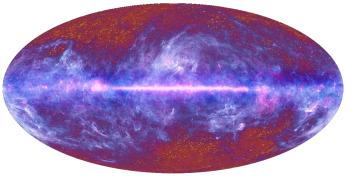
source: ESA

Planck-satellite

Björn Malte Schäfer

CMB motion dipole

- the most important structure on the microwave sky is a dipole
- CMB dipole is interpreted as a relative motion of the earth
- CMB dispole has an amplitude of $10^{-3}K$, and the peculiar velocity is $\beta = 371 \text{km/s/c}$

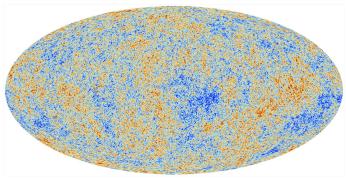

$$T(\theta) = T_0 \left(1 + \beta \cos \theta\right) \tag{5}$$

Björn Malte Schäfer

cosmic microwave background

- the temperature of the sky is not constant, but there are very small fluctuations
- the hot baryon plasma feels fluctuations in the distribution of (dark) matter by gravity
- at the point of (re)combination:
 - hydrogen atoms are formed
 - photons can propagate freely
- perturbations can be observed by two effects:
 - plasma was not at rest, but flowing towards a potential well → Doppler-shift in photon temperature, depending to direction of motion
 - plasma was residing in a potential well \rightarrow gravitational redshift

subtraction of motion dipole



source: PLANCK

Björn Malte Schäfer

CMB

subtraction of Milky Way emission

source: PLANCK

what ...

...about those spots everywhere !?!

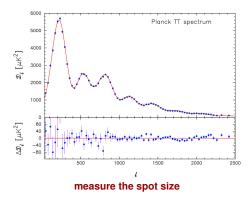
Björn Malte Schäfer

CMB angular spectrum

• analysis of fluctuations on a sphere: decomposition in $Y_{\ell m}$

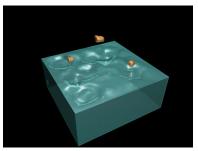
$$T(\theta) = \sum_{\ell} \sum_{m} T_{\ell m} Y_{\ell m}(\theta) \quad \leftrightarrow \quad T_{\ell m} = \int d\Omega \ T(\theta) Y_{\ell m}^*(\theta) \tag{6}$$

- spherical harmonics are an orthonormal basis system
- average fluctuation variance on a scale $\ell \simeq \pi/\theta$


$$C(\ell) = \langle |T_{\ell m}|^2 \rangle \tag{7}$$

 averaging (...) is a hypothetical ensemble average. in reality, one computes an estimate of the variance,

$$C(\ell) \simeq \frac{1}{2\ell + 1} \sum_{m=-\ell}^{m=+\ell} |T_{\ell m}|^2$$
 (8)



what about those spots?

- we compute the Fourier transformation and measure the angular size of the object (aka the wavelength)
- there's a peak in the spectrum at 2 degree: that's the size of the spots

sound waves in the plasma

superposition of sound waves

- processes in the early universe excite sound waves
- we see a superpositions of them in the cosmic microwave background
- there are temperature variations because the plasma is moving around in the sound wave

Björn Malte Schäfer

standard ruler principle

distance estimate with a sniper scope

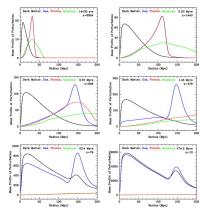
- estimate the distance to an object by measuring the angle under which it appears
- need to know the true physical size of the object

standard ruler principle

trinity nuclear test, 16 milli-seconds after explosion

physical size: combine

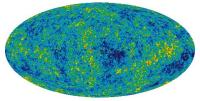
- time since explosion
- 2 velocity of fireball
- distance: combine



physical size

2 angular size

formation of baryon acoustic oscillations

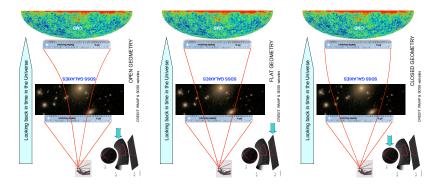


evolution of a single perturbation (source: Eisenstein, Seo and Hu (2005))

from a pointlike perturbation, a spherical wave travels in the photon-baryon-plasma

Björn Mate propagation stops when atoms form

cosmic microwave background: standard ruler



all-sky map of the cosmic microwave background, WMAP

- hot and cold patches of the CMB have a typical physical size, related to the horizon size at the time of formation of hydrogen atoms
- idea: physical size and apparent angle are related, redshift of decoupling known

standard ruler: measurement principle

- curvature can be well constrained
- assumption: galaxy bias understood, nonlinear structure formation not too important

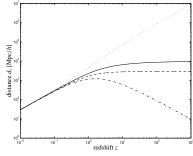
Björn Malte Schäfer

distance measures: comoving distance

- comoving distance χ is the distance on a spatial hypersurface between the world lines of a source and the observer moving with the Hubble flow
- photon geodesics are defined by ds = 0 (Fermat's principle)
- therefore $cdt = -ad\chi$ (from metric), $d\chi = -cda/(a^2H)$

$$\chi = c \int_{a_e}^{a_a} \frac{\mathrm{d}a}{a^2 H(a)} \tag{9}$$

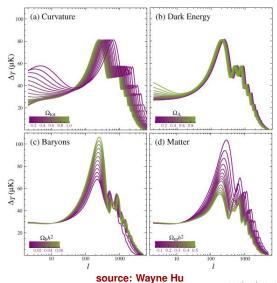
• complete analogy to conformal time $d\eta = da/(a^2H)$, such that $\chi = c\eta$


distance measures: angular diameter distance

- angular diameter distance *d* is the distance infered from the angle under which a physical object appears
- physical cross section ΔA , solid angle $\Delta \Omega$:

$$\frac{\Delta A}{4\pi a_{e\chi}^2} = \frac{\Delta\Omega}{4\pi}$$
(10)

• define d: $d \equiv \sqrt{\frac{\Delta A}{\Delta \Omega}} = a_{e\chi}$ (11) CMB


relation between distance and redshift

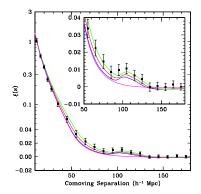
cosmological distances vs. redshift z

Björn Malte Schäfer

parameter sensitivity of the CMB spectrum

Björn Malte Schäfer

CMB simulator


CMB simulator

http://www.strudel.org.uk/planck/

Planck paper model

http://planck.cf.ac.uk/news/make-your-own-planck-model

baryon acoustic oscillations in the galaxies

pair density $\xi(r)$ of galaxies as a function of separation r

 baryon acoustic oscillations: the (pair) density of galaxies is enhanced at a separation of about 100Mpc/h comoving

 idea: angle under which this scale is viewed depends on redshift Björn Matte Schäfer

summary: microwave background

- · we can today observe the radiation from the formation of atoms
- the atoms formed at a temperature of 3000K at a redshift of 1000, and today

- temperature is 3K
- frequency is 160GHz
- 3 wave length is 3mm
- the optical light is shifted to microwaves by cosmological redshifting
- redshifting corresponds to adiabatic cool-down in the expansion

summary: spots in the CMB

- · the temperature has tiny fluctuations: there are spots in the CMB
- sound waves are excited in the plasma in the early Universe
- the sound waves travel until atoms form
- a standard ruler of size $c_s \times \Delta t$ is established
- we observe this standard ruler under an angle of 1...2 degrees
- we know how far the cosmic microwave background is away, and have an integrated measure of the Hubble function